• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Min, Xiongkuo (Min, Xiongkuo.) | Zhai, Guangtao (Zhai, Guangtao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Liu, Jing (Liu, Jing.) | Wang, Shiqi (Wang, Shiqi.) | Zhange, Xinfeng (Zhange, Xinfeng.) | Yang, Xiaokang (Yang, Xiaokang.)

收录:

EI Scopus SCIE

摘要:

Human faces are almost always the focus of visual attention because of the rich semantic information therein. While some visual attention models incorporating face cues indeed perform better in images with faces, yet there is no systematic analysis of the deployment of visual attention on human faces in the context of visual attention modelling, nor is there any specific attention model designed for face images. On faces, many high-level factors have influence on visual attention. To investigate visual attention on human faces, we first construct a Visual Attention database for Faces (VAF database), which is composed of 481 face images along with eye-tracking data of 22 viewers. Statistics of the eye movement data show that some high-level factors such as face size, facial features and face pose have impact on visual attention. Thus we propose to build visual attention models specifically for face images through combining low-level saliency calculated by traditional saliency models with high-level facial features. Efficiency of the built models is verified on the VAF database. When combined with high-level facial features, most saliency models can achieve better performance. (C) 2017 Elsevier Inc. All rights reserved.

关键词:

Saliency map Fixation distribution Facial features Visual attention High-level factors Human face

作者机构:

  • [ 1 ] [Min, Xiongkuo]Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China
  • [ 2 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China
  • [ 3 ] [Yang, Xiaokang]Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Jing]Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
  • [ 6 ] [Wang, Shiqi]City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
  • [ 7 ] [Zhange, Xinfeng]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore

通讯作者信息:

  • [Zhai, Guangtao]Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2017

卷: 420

页码: 417-430

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:1

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:625/5053668
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司