• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yue, Guanghui (Yue, Guanghui.) | Hou, Chunping (Hou, Chunping.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Lin, Nam (Lin, Nam.)

收录:

EI Scopus SCIE

摘要:

In this paper, we put forward an effective and efficient no reference image blurriness assessment metric on the basis of local binary pattern (LBP) features. In this proposal, we reveal that part of the LBP histogram bins present monotonously with the degree of blurriness. The proposed method contains the following steps. Firstly, the LBP maps of an input image are extracted with multiple radiuses. And then, the frequency of pattern histogram is analyzed before part of bins are chosen as the features. In addition, we also take the entropy of these bins as another feature. Finally, we learn the extracted features to predict the image blurriness score. Validation of the proposed method is conducted on the blurred images of LIVE-II, CSIQ, TID2008, TID2013, LIVE3D IQA Phase I and LIVE3D IQA Phase II. Experimental results demonstrate that compared with the state-of-the-art image quality assessment (IQA) methods, the proposed algorithm has notable advantage in correlation with subjective perception and computational complexity.

关键词:

Blurriness/sharpness Image quality assessment (IQA) No reference (NR) Local binary pattern (LBP)

作者机构:

  • [ 1 ] [Yue, Guanghui]Tianjin Univ, Sch Elect Informat Engn, Tianjin, Peoples R China
  • [ 2 ] [Hou, Chunping]Tianjin Univ, Sch Elect Informat Engn, Tianjin, Peoples R China
  • [ 3 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Lin, Nam]Santa Clara Univ, Santa Clara, CA 95053 USA

通讯作者信息:

  • [Yue, Guanghui]Tianjin Univ, Sch Elect Informat Engn, Tianjin, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2017

卷: 49

页码: 382-391

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:3

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:618/3884149
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司