• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xuejing (Li, Xuejing.) | Wang, Lin (Wang, Lin.) | Liu, Zhixin (Liu, Zhixin.) | Dong, Daoyi (Dong, Daoyi.)

收录:

Scopus SCIE PubMed

摘要:

This paper considers the consensus behavior of a spatially distributed 3-D dynamical network composed of heterogeneous agents: leaders and followers, in which the leaders have the preferred information about the destination, while the followers do not have. All followers move in a 3-D Euclidean space with a given speed and with their headings updated according to the average velocity of the corresponding neighbors. Compared with the 2-D model, a key point lies in how to analyze the dynamical behavior of a "linear" nonhomogeneous equation where the nonhomogeneous term strongly nonlinearly depends on the states of all agents. Using the network structure and the estimation of some characteristics for the initial states, we present a proper decaying rate for the nonhomogeneous term and then establish lower bounds on the ratio of the number of leaders to the number of followers that is needed for the expected consensus by considering two cases: 1) fixed speed and neighborhood radius and 2) variable speed and neighborhood radius with respect to the population size. Some simulation examples are given to justify the theoretical results.

关键词:

lower bound leader-follower model expected consensus 3-D flocking model

作者机构:

  • [ 1 ] [Li, Xuejing]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Lin]Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
  • [ 3 ] [Wang, Lin]Minist Educ, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
  • [ 4 ] [Liu, Zhixin]Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
  • [ 5 ] [Dong, Daoyi]Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia

通讯作者信息:

  • [Li, Xuejing]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2017

期: 11

卷: 28

页码: 2555-2565

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:1

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:138/3908898
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司