• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhou, Yan (Zhou, Yan.) | Zhang, Baoxue (Zhang, Baoxue.) | Li, Gaorong (Li, Gaorong.) (学者:李高荣) | Tong, Tiejun (Tong, Tiejun.) | Wan, Xiang (Wan, Xiang.)

收录:

Scopus SCIE PubMed

摘要:

High-throughput techniques bring novel tools and also statistical challenges to genomic research. Identification of which type of diseases a new patient belongs to has been recognized as an important problem. For high-dimensional small sample size data, the classical discriminant methods suffer from the singularity problem and are, therefore, no longer applicable in practice. In this article, we propose a geometric diagonalization method for the regularized discriminant analysis. We then consider a bias correction to further improve the proposed method. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. A microarray dataset and an RNA-seq dataset are also analyzed and they demonstrate the superiority of the proposed method over the existing competitors, especially when the number of samples is small or the number of genes is large. Finally, we have developed an R package called GDRDA which is available upon request.

关键词:

diagonalization bias correction RNA-seq discriminant geometric microarray classification

作者机构:

  • [ 1 ] [Zhou, Yan]Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen, Peoples R China
  • [ 2 ] [Zhang, Baoxue]Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
  • [ 3 ] [Li, Gaorong]Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing, Peoples R China
  • [ 4 ] [Tong, Tiejun]Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
  • [ 5 ] [Wan, Xiang]Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China

通讯作者信息:

  • [Wan, Xiang]Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF COMPUTATIONAL BIOLOGY

ISSN: 1066-5277

年份: 2017

期: 11

卷: 24

页码: 1099-1111

1 . 7 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:215

中科院分区:3

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:327/3778713
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司