• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Lu (Zhang, Lu.) | Tan, Jianjun (Tan, Jianjun.) | Han, Dan (Han, Dan.) | Zhu, Hao (Zhu, Hao.)

收录:

Scopus SCIE PubMed

摘要:

Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era.

关键词:

作者机构:

  • [ 1 ] [Zhang, Lu]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 2 ] [Tan, Jianjun]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Dan]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Hao]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhu, Hao]Rutgers State Univ, Dept Chem, Camden, NJ 08102 USA
  • [ 6 ] [Zhu, Hao]Rutgers Ctr Computat & Integrat Biol, Camden, NJ 08102 USA

通讯作者信息:

  • [Tan, Jianjun]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China;;[Zhu, Hao]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China;;[Zhu, Hao]Rutgers State Univ, Dept Chem, Camden, NJ 08102 USA;;[Zhu, Hao]Rutgers Ctr Computat & Integrat Biol, Camden, NJ 08102 USA

查看成果更多字段

相关关键词:

相关文章:

来源 :

DRUG DISCOVERY TODAY

ISSN: 1359-6446

年份: 2017

期: 11

卷: 22

页码: 1680-1685

7 . 4 0 0

JCR@2022

ESI学科: PHARMACOLOGY & TOXICOLOGY;

ESI高被引阀值:160

中科院分区:1

被引次数:

WoS核心集被引频次: 391

SCOPUS被引频次: 512

ESI高被引论文在榜: 36 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:417/4288729
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司