• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ying (He, Ying.) | Zhang, Zheng (Zhang, Zheng.) | Yu, F. Richard (Yu, F. Richard.) | Zhao, Nan (Zhao, Nan.) | Yin, Hongxi (Yin, Hongxi.) | Leung, Victor C. M. (Leung, Victor C. M..) | Zhang, Yanhua (Zhang, Yanhua.) (学者:张延华)

收录:

EI Scopus SCIE

摘要:

Both caching and interference alignment (IA) are promising techniques for next-generation wireless networks. Nevertheless, most of the existing works on cache-enabled IA wireless networks assume that the channel is invariant, which is unrealistic considering the time-varying nature of practical wireless environments. In this paper, we consider realistic time-varying channels. Specifically, the channel is formulated as a finite-state Markov channel (FSMC). The complexity of the system is very high when we consider realistic FSMC models. Therefore, in this paper, we propose a novel deep reinforcement learning approach, which is an advanced reinforcement learning algorithm that uses a deep Q network to approximate the Q value-action function. We use Google TensorFlow to implement deep reinforcement learning in this paper to obtain the optimal IA user selection policy in cache-enabled opportunistic IA wireless networks. Simulation results are presented to show that the performance of cache-enabled opportunistic IA networks in terms of the network's sum rate and energy efficiency can be significantly improved by using the proposed approach.

关键词:

interference alignment Caching deep reinforcement learning

作者机构:

  • [ 1 ] [He, Ying]Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
  • [ 2 ] [Zhao, Nan]Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
  • [ 3 ] [Yin, Hongxi]Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
  • [ 4 ] [He, Ying]Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
  • [ 5 ] [Yu, F. Richard]Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
  • [ 6 ] [Zhang, Zheng]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Yanhua]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Leung, Victor C. M.]Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada

通讯作者信息:

  • [Zhao, Nan]Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ISSN: 0018-9545

年份: 2017

期: 11

卷: 66

页码: 10433-10445

6 . 8 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:2

被引次数:

WoS核心集被引频次: 248

SCOPUS被引频次: 281

ESI高被引论文在榜: 18 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2021-9
  • 2021-7

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:135/4822808
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司