• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tong, Lei (Tong, Lei.) | Yu, Jing (Yu, Jing.) | Xiao, Chuangbai (Xiao, Chuangbai.) | Qian, Bin (Qian, Bin.)

收录:

EI Scopus SCIE

摘要:

Hyperspectral unmixing is one of the most important techniques in hyperspectral remote sensing image analysis. During the past decades, many models have been widely used in hyperspectral unmixing, such as nonnegative matrix factorization (NMF) model, sparse regression model, etc. Most recently, a new matrix factorization model, deep matrix, is proposed and shows good performance in face recognition area. In this paper, we introduce the deep matrix factorization (DMF) for hyperspectral unmixing. In this method, the DMF method is applied for hyperspectral unmixing. Compared with the traditional NMF-based unmixing methods, DMF could extract more information with multiple-layer structures. An optimization algorithm is also proposed for DMF with two designed processes. Results on both synthetic and real data have validated the effectiveness of this method, and shown that it has outperformed several state-of-the-art unmixing approaches.

关键词:

hyperspectral unmixing deep matrix factorization Hyperspectral images

作者机构:

  • [ 1 ] [Tong, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yu, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xiao, Chuangbai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qian, Bin]Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China

通讯作者信息:

  • [Tong, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING

ISSN: 0219-6913

年份: 2017

期: 6

卷: 15

1 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:4

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:624/3904005
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司