• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mi (Li, Mi.) (学者:栗觅) | Liu, Xingwang (Liu, Xingwang.) | Lu, Shengfu (Lu, Shengfu.) | Wang, Xiaodong (Wang, Xiaodong.) | Zhong, Ning (Zhong, Ning.)

收录:

SSCI Scopus SCIE

摘要:

This study proposed a method to solve the problems existing in depression recognition, which is based on visual information, improved particle swarm optimization algorithm (PSO) and support vector machine (SVM). The PSO algorithm easily falls into local optimums; therefore, to solve the problem, we proposed an adaptive mutation PSO algorithm (AMPSO) to balance the capability of local exploitation and global exploration, thus creating a classification model with optimal parameters. First, we used no-iterative algorithms the kernel ridge regression and random forest to classify the depression and normal. Then, we compared the recognition accuracy using different PSO algorithms and found the visual information accuracy of the AMPSO algorithm for the SVM classifier to be the highest. Our research is of an important reference value for the establishment of methods for depression recognition with clinical applications.

关键词:

Depression Recognition Support Vector Machine (SVM) Adaptive Mutation Particle Swarm Optimization (PSO)

作者机构:

  • [ 1 ] [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Xingwang]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Xiaodong]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 5 ] [Zhong, Ning]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 6 ] [Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhong, Ning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Mi]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 9 ] [Liu, Xingwang]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 10 ] [Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 11 ] [Wang, Xiaodong]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 12 ] [Zhong, Ning]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 13 ] [Li, Mi]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China
  • [ 14 ] [Liu, Xingwang]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China
  • [ 15 ] [Lu, Shengfu]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China
  • [ 16 ] [Wang, Xiaodong]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China
  • [ 17 ] [Zhong, Ning]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China
  • [ 18 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 3710816, Japan

通讯作者信息:

  • 钟宁

    [Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China;;[Zhong, Ning]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China;;[Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Zhong, Ning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China;;[Zhong, Ning]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China;;[Lu, Shengfu]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China;;[Zhong, Ning]Beijing Key Lab MRI & Brain Informat, Beijing 100024, Peoples R China;;[Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 3710816, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS

ISSN: 2156-7018

年份: 2017

期: 7

卷: 7

页码: 1572-1579

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:190

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:1287/3891987
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司