• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Min, Xiongkuo (Min, Xiongkuo.) | Ma, Kede (Ma, Kede.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Zhai, Guangtao (Zhai, Guangtao.) | Wang, Zhou (Wang, Zhou.) | Lin, Weisi (Lin, Weisi.)

收录:

EI Scopus SCIE

摘要:

Digital images in the real world are created by a variety of means and have diverse properties. A photographical natural scene image (NSI) may exhibit substantially different characteristics from a computer graphic image (CGI) or a screen content image (SCI). This casts major challenges to objective image quality assessment, for which existing approaches lack effective mechanisms to capture such content type variations, and thus are difficult to generalize from one type to another. To tackle this problem, we first construct a cross-content-type (CCT) database, which contains 1,320 distorted NSIs, CGIs, and SCIs, compressed using the high efficiency video coding (HEVC) intra coding method and the screen content compression (SCC) extension of HEVC. We then carry out a subjective experiment on the database in a well-controlled laboratory environment. Moreover, we propose a unified content-type adaptive (UCA) blind image quality assessment model that is applicable across content types. A key step in UCA is to incorporate the variations of human perceptual characteristics in viewing different content types through a multi-scale weighting framework. This leads to superior performance on the constructed CCT database. UCA is training-free, implying strong generalizability. To verify this, we test UCA on other databases containing JPEG, MPEG-2, H.264, and HEVC compressed images/videos, and observe that it consistently achieves competitive performance.

关键词:

computer graphic image Natural scene image screen content compression (SCC) screen content image high efficiency video coding (HEVC) image quality assessment

作者机构:

  • [ 1 ] [Min, Xiongkuo]Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China
  • [ 2 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China
  • [ 3 ] [Min, Xiongkuo]Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
  • [ 4 ] [Ma, Kede]Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
  • [ 5 ] [Wang, Zhou]Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
  • [ 6 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore

通讯作者信息:

  • [Zhai, Guangtao]Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Inst Image Commun & Network Engn, Shanghai 200240, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2017

期: 11

卷: 26

页码: 5462-5474

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:2

被引次数:

WoS核心集被引频次: 214

SCOPUS被引频次: 236

ESI高被引论文在榜: 2 展开所有

  • 2024-11
  • 2024-11

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:885/3878914
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司