• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shu (Wang, Shu.) (学者:王术) | Wang, Boyi (Wang, Boyi.) | Liu, Chundi (Liu, Chundi.) | Wang, Na (Wang, Na.)

收录:

Scopus SCIE

摘要:

The purpose of this paper is to study the boundary layer problem and zero viscosity-diffusion limit of the initial boundary value problem for the incompressible viscous and diffusive magnetohydrodynamic (MHD) system with (no-slip characteristic) Dirichlet boundary conditions and to prove that the corresponding Prandtl's type boundary layer are stable with respect to small viscosity-diffusion coefficients. The main difficulty here comes from Dirichlet boundary conditions for the velocity and magnetic field. Firstly, we identify a non-trivial class of initial data for which we can establish the uniform stability of the Prandtl's type boundary layers and prove rigorously the solution of incompressible viscous-diffusion MHD system converges strongly to the sum of the solution to the ideal MHD system and the approximating solution to Prandtl's type boundary layer equation by using the elaborate energy methods and the special structure of the solution to ideal MHD system with the initial data we identify here, which yields that there exists the cancellation between the boundary layer of the velocity and that of the magnetic field. Secondly, for general initial data, we obtain zero viscosity-diffusion limit of the incompressible viscous and diffusive MHD system with the different horizontal and vertical viscosities and magnetic diffusions, when they go to zero with the different speeds, and, we prove rigorously the convergence of the incompressible viscous and diffusion MHD system to the ideal MHD system or the anisotropic MUD system by constructing the exact boundary layers and using the elaborate energy methods. We also mention that these results obtained here should be the first rigorous ones on the stability of Prandtl's type boundary layer for the incompressible viscous and diffusion MED system with no-slip characteristic boundary, condition. (C) 2017 Elsevier Inc. All rights reserved.

关键词:

Anisotropic inviscid MHD system Boundary layer for no-slip boundary conditions Ideal MHD system Incompressible viscous and diffusive MHD system

作者机构:

  • [ 1 ] [Wang, Shu]Beijing Univ Technol, Coll Appl Sci, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Chundi]Beijing Univ Technol, Coll Appl Sci, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Na]Beijing Univ Technol, Coll Appl Sci, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Boyi]Beijing Normal Univ, Sch Math Sci, XinjieKouWai St, Beijing 100875, Peoples R China
  • [ 5 ] [Wang, Boyi]Natl Univ Singapore, Dept Math, 21 Lower Kent Ridge Rd, Singapore 11907, Singapore

通讯作者信息:

  • [Wang, Boyi]Beijing Normal Univ, Sch Math Sci, XinjieKouWai St, Beijing 100875, Peoples R China;;[Wang, Boyi]Natl Univ Singapore, Dept Math, 21 Lower Kent Ridge Rd, Singapore 11907, Singapore

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF DIFFERENTIAL EQUATIONS

ISSN: 0022-0396

年份: 2017

期: 8

卷: 263

页码: 4723-4749

2 . 4 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:39

中科院分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:425/3652970
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司