• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Youjun (Li, Youjun.) | Huang, Jiajin (Huang, Jiajin.) | Zhou, Haiyan (Zhou, Haiyan.) | Zhong, Ning (Zhong, Ning.)

收录:

Scopus SCIE

摘要:

The aim of this study is to recognize human emotions by electroencephalographic (EEG) signals. The innovation of our research methods involves two aspects: First, we integrate the spatial characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image (EEG MFI) sequences to represent the emotion variation with EEG signals. Second, we construct a hybrid deep neural network to deal with the EEG MFI sequences to recognize human emotional states where the hybrid deep neural network combined the Convolution Neural Networks (CNN) and Long Short-Term-Memory (LSTM) Recurrent Neural Networks (RNN). Empirical research is carried out with the open-source dataset DEAP (a Dataset for Emotion Analysis using EEG, Physiological, and video signals) using our method, and the results demonstrate the significant improvements over current state-of-the-art approaches in this field. The average emotion classification accuracy of each subject with CLRNN (the hybrid neural networks that we proposed in this study) is 75.21%.

关键词:

LSTM RNN CNN EEG signal emotion recognition multidimensional features hybrid neural networks

作者机构:

  • [ 1 ] [Li, Youjun]Beijing Univ Technol, Inst Int WIC, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Jiajin]Beijing Univ Technol, Inst Int WIC, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Haiyan]Beijing Univ Technol, Inst Int WIC, Beijing 100124, Peoples R China
  • [ 4 ] [Zhong, Ning]Beijing Univ Technol, Inst Int WIC, Beijing 100124, Peoples R China
  • [ 5 ] [Zhong, Ning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Knowledge Informat Syst Lab, Maebashi, Gunma 3710816, Japan

通讯作者信息:

  • 钟宁

    [Zhong, Ning]Beijing Univ Technol, Inst Int WIC, Beijing 100124, Peoples R China;;[Zhong, Ning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Knowledge Informat Syst Lab, Maebashi, Gunma 3710816, Japan

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2017

期: 10

卷: 7

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:4

被引次数:

WoS核心集被引频次: 107

SCOPUS被引频次: 146

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:427/4968596
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司