• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Guandong (Chen, Guandong.) | Li, Yu (Li, Yu.) | Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | Zhang, Yuanzhi (Zhang, Yuanzhi.)

收录:

Scopus SCIE

摘要:

Polarimetric synthetic aperture radar (SAR) remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE) and deep belief network (DBN) are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM) and traditional artificial neural networks (ANN) with similar parameter settings, especially when the number of training data samples is limited.

关键词:

polarimetric synthetic aperture radar (SAR) deep belief network autoencoder oil spill remote sensing

作者机构:

  • [ 1 ] [Chen, Guandong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Yuanzhi]Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
  • [ 5 ] [Zhang, Yuanzhi]Chinese Acad Sci, Key Lab Lunar Sci & Deep Space Explorat, Beijing 100012, Peoples R China

通讯作者信息:

  • [Li, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Zhang, Yuanzhi]Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China;;[Zhang, Yuanzhi]Chinese Acad Sci, Key Lab Lunar Sci & Deep Space Explorat, Beijing 100012, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2017

期: 10

卷: 7

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:4

被引次数:

WoS核心集被引频次: 59

SCOPUS被引频次: 74

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:404/3910710
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司