• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dai, Tao (Dai, Tao.) | Xu, Zhiya (Xu, Zhiya.) | Liang, Haoyi (Liang, Haoyi.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Tang, Qingtao (Tang, Qingtao.) | Wang, Yisen (Wang, Yisen.) | Lu, Weizhi (Lu, Weizhi.) | Xia, Shu-Tao (Xia, Shu-Tao.)

收录:

EI Scopus SCIE

摘要:

Though existing state-of-the-art denoising algorithms, such as BM3D, LPG-PCA and DDF, obtain remarkable results, these methods are not good at preserving details at high noise levels, sometimes even introducing non-existent artifacts. To improve the performance of these denoising methods at high noise levels, a generic denoising framework is proposed in this paper, which is based on guided principle component analysis (GPCA). The propose framework can be split into two stages. First, we use statistic test to generate an initial denoised image through back projection, where the statistical test can detect the significantly relevant information between the denoised image and the corresponding residual image. Second, similar image patches are collected to form different patch groups, and local basis are learned from each patch group by principle component analysis. Experimental results on natural images, contaminated with Gaussian and non-Gaussian noise, verify the effectiveness of the proposed framework. (C) 2017 Elsevier Inc. All rights reserved.

关键词:

Principal component analysis Back projection Image denoising

作者机构:

  • [ 1 ] [Dai, Tao]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 2 ] [Xu, Zhiya]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 3 ] [Tang, Qingtao]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 4 ] [Wang, Yisen]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 5 ] [Lu, Weizhi]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 6 ] [Xia, Shu-Tao]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 7 ] [Liang, Haoyi]Univ Virginia, Dept ECE, Charlottesville, VA 22904 USA
  • [ 8 ] [Gu, Ke]Beijing Univ Technol, BJUT Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Lu, Weizhi]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2017

卷: 48

页码: 340-352

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:3

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:125/4299394
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司