• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) (学者:韩红桂) | Lu, Wei (Lu, Wei.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Multiobjective particle swarm optimization (MOPSO) algorithms have attracted much attention for their promising performance in solving multiobjective optimization problems (MOPs). In this paper, an adaptive MOPSO (AMOPSO) algorithm, based on a hybrid framework of the solution distribution entropy and population spacing (SP) information, is developed to improve the search performance in terms of convergent speed and precision. First, an adaptive global best (gBest) selection mechanism, based on the solution distribution entropy, is introduced to analyze the evolutionary tendency and balance the diversity and convergence of nondominated solutions in the archive. Second, an adaptive flight parameter adjustment mechanism, using the population SP information, is proposed to obtain the distribution of particles with suitable diversity and convergence, which can balance the global exploration and local exploitation abilities of the particles. Third, based on the gBest selection mechanism and the adaptive flight parameter mechanism, this proposed AMOPSO algorithm not only has high accuracy, but also attain a set of optimal solutions with better diversity. Finally, the performance of the proposed AMOPSO algorithm is validated and compared with other five state-of-the-art algorithms on a number of benchmark problems and water distribution system. The experimental results validate the effectiveness of the proposed AMOPSO algorithm, as well as demonstrate that AMOPSO outperforms other MOPSO algorithms in solving MOPs.

关键词:

global best (gBest) selection mechanism Adaptive flight parameter adjustment mechanism multiobjective optimization problems (MOPs) adaptive multiobjective particle swarm optimization (AMOPSO)

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CYBERNETICS

ISSN: 2168-2267

年份: 2017

期: 9

卷: 47

页码: 2754-2767

1 1 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:1

被引次数:

WoS核心集被引频次: 85

SCOPUS被引频次: 103

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:257/5030007
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司