• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, J.-G. (Li, J.-G..) | He, Y.-H. (He, Y.-H..) | Guo, Q.-L. (Guo, Q.-L..)

收录:

Scopus PKU CSCD

摘要:

Using machine learning methods to analyze microarray data of gastric cancer and discover novel marker gene can provide suggestion for further study of the molecular mechanism, gene level diagnosis and treatment, of gastric cancer. Most existing methods use machine learning methods to extract marker gene using only one data set. This paper proposed a hybrid genetic algorithm (GA)/support vector machine (SVM) approach to analyze multi gastric cancer microarray dataset in parallel and select marker genes. Three datasets are analyzed. The experiment was performed 4580 times. The top 20 genes with highest occurrence times in the final populations of the GA (the occurrence times can represent the significance of classification in a sense) are selected as marker genes. Based on these genes the classification accuracies are above 90% in each of the three datasets. Meanwhile, biological significance analyses show that this method can identify the tumor related genes efficaciously. These genes are vital for human gastric cancer diagnosis and classification.

关键词:

Gastric cancer; Genetic algorithm (GA); Marker gene; Support vector machine (SVM)

作者机构:

  • [ 1 ] [Li, J.-G.]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [He, Y.-H.]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Guo, Q.-L.]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • [Li, J.-G.]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing 100124, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2013

期: 10

卷: 39

页码: 1590-1595

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:290/3655815
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司