• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, X.-F. (Zhang, X.-F..) | Jiao, Y. (Jiao, Y..) | Li, H.-H. (Li, H.-H..) | Zhuo, L. (Zhuo, L..)

收录:

Scopus PKU CSCD

摘要:

The model parameters of a classifier directly affect the classification results. According to the traits of additional irrelevant samples in the learning process of Universum SVM, this paper optimizes parameters with particle swarm optimization (PSO) due to its simple concept, high computational efficiency, and less impact by the changes of the problem dimension; therefore, several parameters can be simultaneously optimized. Besides, selection for fitness function is a key factor in PSO algorithm. According to its unbiased estimation, k-fold cross validation error is considered as the fitness value, by which an evaluation on the particle can be obtained. Finally, through experiment on tongue samples, the recognition accuracy rates on test samples before and after optimizing the parameters are compared. Result verifies the effectiveness of the proposed algorithm.

关键词:

Parameter selection; Particle swarm optimization (PSO); Universum SVM

作者机构:

  • [ 1 ] [Zhang, X.-F.]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Jiao, Y.]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Li, H.-H.]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Zhuo, L.]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • [Zhang, X.-F.]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing 100124, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2013

期: 6

卷: 39

页码: 840-845

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:152/3918132
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司