• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Ke (Gu, Ke.) (学者:顾锞) | Zhou, Jun (Zhou, Jun.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Zhai, Guangtao (Zhai, Guangtao.) | Lin, Weisi (Lin, Weisi.) | Bovik, Alan Conrad (Bovik, Alan Conrad.)

收录:

EI Scopus SCIE

摘要:

Recent years have witnessed a growing number of image and video centric applications on mobile, vehicular, and cloud platforms, involving a wide variety of digital screen content images. Unlike natural scene images captured with modern high fidelity cameras, screen content images are typically composed of fewer colors, simpler shapes, and a larger frequency of thin lines. In this paper, we develop a novel blind/no-reference (NR) model for accessing the perceptual quality of screen content pictures with big data learning. The new model extracts four types of features descriptive of the picture complexity, of screen content statistics, of global brightness quality, and of the sharpness of details. Comparative experiments verify the efficacy of the new model as compared with existing relevant blind picture quality assessment algorithms applied on screen content image databases. A regression module is trained on a considerable number of training samples labeled with objective visual quality predictions delivered by a high-performance full-reference method designed for screen content image quality assessment (IQA). This results in an opinion-unaware NR blind screen content IQA algorithm. Our proposed model delivers computational efficiency and promising performance. The source code of the new model will be available at: https://sites.google.com/site/guke198701/publications.

关键词:

image complexity description big data no-reference (NR) hybrid filter opinion-unaware (OU) image quality assessment (IQA) Screen content image scene statistics model

作者机构:

  • [ 1 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Jun]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 4 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 5 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 6 ] [Bovik, Alan Conrad]Univ Texas Austin, Dept Elect & Comp Engn, Lab Image & Video Engn, Austin, TX 78712 USA

通讯作者信息:

  • 顾锞

    [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2017

期: 8

卷: 26

页码: 4005-4018

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:2

被引次数:

WoS核心集被引频次: 183

SCOPUS被引频次: 222

ESI高被引论文在榜: 22 展开所有

  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2019-11

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:121/4713797
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司