• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Jiajin (Huang, Jiajin.) | Wang, Jian (Wang, Jian.) | Yao, Yiyu (Yao, Yiyu.) (学者:姚一豫) | Zhong, Ning (Zhong, Ning.)

收录:

EI Scopus SCIE

摘要:

Recommender systems aim to identify items that a user may like. In this paper, we discuss a three-way decision approach which provides a more meaningful way to recommend items to a user. Besides recommended items and not recommended items, the proposed model adds a set of items that are possibly recommended to users. In the model, we focus on two issues. One is the computation of required thresholds to define the three sets based on the decision-theoretic rough set model. The other is the notion of user preference on the three sets which forms the basis of a ranking strategy, and then a pair-wise preference learning algorithm using gradient descent is adopted for inferring latent vectors for users and items. Working with a sigmoid function of a product of a user and item latent vector, we estimate the probability that the user prefers the item to make recommendations. Experimental results show that the proposed method improves recommendation quality from the cost-sensitive view. (C) 2017 Elsevier Inc. All rights reserved.

关键词:

Three-way decision Recommender system

作者机构:

  • [ 1 ] [Huang, Jiajin]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Jian]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Yao, Yiyu]Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
  • [ 5 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 3710816, Japan

通讯作者信息:

  • 钟宁

    [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China;;[Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 3710816, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF APPROXIMATE REASONING

ISSN: 0888-613X

年份: 2017

卷: 86

页码: 28-40

3 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:3

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:112/3918596
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司