• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Qiang (Wang, Qiang.) | Yan, Yinzhou (Yan, Yinzhou.) (学者:闫胤洲) | Zeng, Yong (Zeng, Yong.) | Jiang, Yijian (Jiang, Yijian.) (学者:蒋毅坚)

收录:

CPCI-S EI Scopus SCIE

摘要:

In this work, high-quality free-standing ZnO single-crystal microtubes with hexagonal cross-section were fabricated by an optical image furnace. Optical vapor supersaturated precipitation (OVSP) and axial photothermal-decomposition were proposed to interpret the microrods growth and microtubes formation, respectively. The maximum dimensions of the grown microtube were 5 mm in length, 100 mu m in diameter and 1 mu m in facet wall thickness. In our previous work, a new room-temperature photoluminescence (PL) peak (similar to 392 nm) of ZnO microtubes was attributed to VZn-related donor-acceptor-pairs (DAP) transition. This work further confirmed the VZn-related acceptors widely existing during ZnO microrods/ microtubes growth by OVSP. The effects of major growth parameters (e.g. lamp power, filament geometry and growth platform shape) on temperature field at the growth platform of precursor rod were studied by a finite element model as well. The lamp power of 65% (1500 W), thick single-filament and appropriate conical growth platform were optimized for a uniform temperature field to achieve consistent finish quality of microtubes and prevent twin-microtubes formation. This work would be beneficial for batch growth of the novel ZnO microtubes/microrods with high quality for a variety of applications.

关键词:

Characterization Computer simulation Finite element method Microtubes Optical vapor supersaturated precipitation Zinc oxide

作者机构:

  • [ 1 ] [Wang, Qiang]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Yinzhou]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zeng, Yong]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Jiang, Yijian]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 闫胤洲

    [Yan, Yinzhou]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF CRYSTAL GROWTH

ISSN: 0022-0248

年份: 2017

卷: 468

页码: 638-644

1 . 8 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:127

中科院分区:4

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:404/2894208
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司