• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Zhang, Renbo (Zhang, Renbo.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

Concrete structures are subjected to various loadings during their service life and their internal structures will be changed, resulting variations in mechanical and thermo-physical properties. To investigate the effect of mechanical stress on thermal conduction, a computational homogenization method from a mesoscopic perspective was proposed in the present work. In the simulations, concrete was considered as a three-phase composite material consisting of aggregate, mortar matrix and the interfacial transition zones (ITZs) between them. The mechanical analysis was conducted firstly to study the damage distribution within concrete. The outcomes of mechanical computation were then used as the initial input data in the thermal conduction computation. The equivalent thermal conductivity of damaged element was homogenized by a composite mechanical method based on damage and the initial thermal conductivity of sound material. Accordingly, a meso-scale model in which the mechanical and thermal behavior were one-way coupled was built. The method was calibrated by comparing the numerical results with the available experimentally measured ones. Based on the verified simulation method, effective thermal conductivity (ETC) and temperature field of concrete subjected to different loading levels were calculated. Besides, the effects of loading type (compressive and tensile loadings) on ETC and temperature field of concrete were studied. It is found that ETC of concrete decreases with an increasing loading level. In addition, the effect of tensile loading on thermal behavior depends on whether the direction of thermal conduction is parallel or perpendicular to loadings. (C) 2017 Elsevier Ltd. All rights reserved.

关键词:

Computational homogenization Concrete Effective thermal conductivity Mechanical stress Thermal conduction

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

通讯作者信息:

  • 杜修力

    [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China;;[Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

年份: 2017

卷: 141

页码: 222-234

7 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:169

中科院分区:2

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 32

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:664/2909449
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司