• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Juan (Wang, Juan.) | Yang, Xiaoyu (Yang, Xiaoyu.) | Wang, Guisheng (Wang, Guisheng.) | Ren, Jie (Ren, Jie.) | Wang, Zongguo (Wang, Zongguo.) | Zhao, Xushan (Zhao, Xushan.) | Pan, Yue (Pan, Yue.)

收录:

EI Scopus SCIE

摘要:

Estimating Density Functional Theory (DFT) calculation error is an important while challenging task in computational material science. The calculation contains inherent errors due to improper input parameters and approximated exchange-correlation functional. In this paper, we present a data-driven approach of using machine learning techniques to estimate the error of DFT calculation. We prepare the data by high-throughput first principle DFT simulation and experimental data collection. The single-hidden layer back propagation feedforward neural network (SLBPFN) constructed based on the proposed cross validation algorithm, and support vector machine for regression (SVR) techniques are employed to build regression models to predict the DFT calculation error. As a demonstration, the developed regression models are used to predict errors in calculating elastic constants of cubic binary alloys. It has been demonstrated that the machine learning techniques can predict DFT calculation error of elastic constants with an acceptable accuracy. It also shows the BP neural network built by our proposed cross validation algorithm can provide a better prediction. Our study is a first-invasive work of using machine learning techniques to estimate the errors in calculating elastic constants of binary alloys. (C) 2017 Elsevier B.V. All rights reserved.

关键词:

Error estimation High-throughput DFT calculation Support vector regression Cross validation Neural network

作者机构:

  • [ 1 ] [Wang, Juan]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
  • [ 2 ] [Yang, Xiaoyu]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
  • [ 3 ] [Ren, Jie]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
  • [ 4 ] [Wang, Zongguo]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
  • [ 5 ] [Zhao, Xushan]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
  • [ 6 ] [Wang, Juan]Univ Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 7 ] [Yang, Xiaoyu]Univ Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 8 ] [Ren, Jie]Univ Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 9 ] [Wang, Guisheng]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 10 ] [Pan, Yue]Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China

通讯作者信息:

  • [Yang, Xiaoyu]Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMPUTATIONAL MATERIALS SCIENCE

ISSN: 0927-0256

年份: 2017

卷: 134

页码: 190-200

3 . 3 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:287

中科院分区:3

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:807/3889950
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司