收录:
摘要:
Multiple degree-of-freedom compliant mechanisms are widely used in the fields of micropositioning and micro-manipulation. This paper deals with multiobjective topology optimization of multi-input and multi-output compliant mechanisms undergoing large deformation. The objective function is defined by the minimum compliance and maximum geometric advantage to meet both stiffness and flexibility requirements. The suppression strategy of input and output coupling terms is studied and the expression of the output coupling terms is further developed. The weighted sum of the conflicting objectives resulting from the norm method is used to generate the optimal compromise solutions, and the decision function is set to select the preferred solution. Geometrically nonlinear mechanism response is calculated using the Total-Lagrange finite element formulation and the equilibrium is found using an incremental scheme combined with Newton-Raphson iterations. The solid isotropic material with penalization approach is used in design of compliant mechanisms. The sensitivities of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. Numerical examples of multiple inputs and outputs are presented to show the validity of the new method. Simulation results show that the compliant mechanisms can be deformed in the desirable manner and the coupling output displacements are suppressed significantly by using the presented method. © (2013) Trans Tech Publications, Switzerland.
关键词:
通讯作者信息:
电子邮件地址: