• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Mengdi (Wang, Mengdi.) | Yu, Jing (Yu, Jing.) | Niu, Lijuan (Niu, Lijuan.) | Sun, Weidong (Sun, Weidong.)

收录:

EI Scopus SCIE

摘要:

Hyperspectral images (HSIs) usually contain hundreds of spectral bands. When they are used for classification tasks, HSIs may suffer from the curse of high dimensionality. To address this problem, the essential procedures of dimension reduction and feature extraction (FE) are employed. In this letter, we propose an FE method for HSIs using low-rank representation with neighborhood preserving regularization (LRR_NP). The proposed method can simultaneously employ locally spatial similarity and the spectral space structure, which comprises a union of multiple low-rank subspaces. The framework of LRR can structurally represent the union structure of a spectral space. Because spatial neighbor pixels always share high similarity in a feature space, an NP regularization item is introduced into the framework of LRR to consider the locally spatial correlation. Classification experiments are conducted on real HSI data sets; the results demonstrate that the features that are extracted by LRR_NP are more discriminative than the state-of-art methods, including both unsupervised methods and supervised methods.

关键词:

unsupervised and supervised low-rank representation (LRR) Feature extraction (FE) hyperspectral image (HSI) neighborhood preserving (NP) union structure

作者机构:

  • [ 1 ] [Wang, Mengdi]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 2 ] [Sun, Weidong]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 3 ] [Yu, Jing]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Niu, Lijuan]Chinese Acad Med Sci, Canc Hosp, Natl Canc Ctr, Beijing 100021, Peoples R China
  • [ 5 ] [Niu, Lijuan]Peking Union Med Coll, Beijing 100021, Peoples R China

通讯作者信息:

  • [Wang, Mengdi]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

ISSN: 1545-598X

年份: 2017

期: 6

卷: 14

页码: 836-840

4 . 8 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:163

中科院分区:3

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:456/3894419
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司