• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Haiying (Yuan, Haiying.) | Wang, Xiuyu (Wang, Xiuyu.) | Sun, Xun (Sun, Xun.) | Ju, Zijian (Ju, Zijian.)

收录:

Scopus SCIE

摘要:

Bearing fault diagnosis collects massive amounts of vibration data about a rotating machinery system, whose fault classification largely depends on feature extraction. Features reflecting bearing work states are directly extracted using time-frequency analysis of vibration signals, which leads to high dimensional feature data. To address the problem of feature dimension reduction, a compressive sensing-based feature extraction algorithm is developed to construct a concise fault feature set. Next, a heuristic PSO-BP neural network, whose learning process perfectly combines particle swarm optimization and the Levenberg-Marquardt algorithm, is constructed for fault classification. Numerical simulation experiments are conducted on four datasets sampled under different severity levels and load conditions, which verify that the proposed fault diagnosis method achieves efficient feature extraction and high classification accuracy.

关键词:

bearing fault diagnosis compressive sensing measurement feature extraction heuristic PSO-BP neural network

作者机构:

  • [ 1 ] [Yuan, Haiying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Xiuyu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ju, Zijian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Xun]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China

通讯作者信息:

  • [Yuan, Haiying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MEASUREMENT SCIENCE AND TECHNOLOGY

ISSN: 0957-0233

年份: 2017

期: 6

卷: 28

2 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:92

中科院分区:3

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:87/3609763
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司