• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yu, Tian-Jun (Yu, Tian-Jun.) | Zhou, Sha (Zhou, Sha.) | Yang, Xiao-Dong (Yang, Xiao-Dong.) (Scholars:杨晓东) | Zhang, Wei (Zhang, Wei.)

Indexed by:

EI Scopus SCIE

Abstract:

Global dynamics of forcedly excited composite panels with free layer damping treatment in subsonic flow near the first-order critical velocity is investigated. Hamilton's principle is implemented to derive the PDE of such fluid-structure interaction systems. Then the governing equation is transformed into a discretized nonlinear gyroscopic system via assumed modes and Galerkin's method. The canonical transformations and normal form theory are applied to reduce the equations of motion to near-integrable Hamiltonian standard forms considering zero to one internal resonance. The Energy-Phase method is employed to demonstrate the existence of chaotic dynamics by identifying the existence of multi-pulse jumping orbits in the perturbed phase space. In both the Hamiltonian and the dissipative perturbation case, the homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are demonstrated. In the case of dissipative perturbation, the existence of generalized Silnikov's type of orbits which are homoclinic to fixed points on the slow manifold are examined and the parameter region for which the dynamical system may exhibit chaotic motions in the sense of Smale horseshoes are obtained analytically. The present research illustrates that the existence of multi-pulse homoclinic orbits can provide a mechanism for how energy flow from the high-frequency mode to the low-frequency mode. The global results are finally interpreted in terms of the physical traveling wave motion of such gyroscopic continua. (C) 2017 Elsevier Ltd. All rights reserved.

Keyword:

Composite panel Multi-pulse homoclinic orbits Gyroscopic system Aeroelasticity Chaotic traveling wave motions Global dynamics

Author Community:

  • [ 1 ] [Yu, Tian-Jun]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Sha]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 杨晓东

    [Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

COMPOSITE STRUCTURES

ISSN: 0263-8223

Year: 2017

Volume: 168

Page: 247-258

6 . 3 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:287

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 5

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:849/5260394
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.