• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, J.-F. (Qiao, J.-F..) (学者:乔俊飞) | Pan, G.-Y. (Pan, G.-Y..) | Han, H.-G. (Han, H.-G..) (学者:韩红桂)

收录:

Scopus PKU CSCD

摘要:

A continuous deep belief network (cDBN) with two hidden layers is proposed to solve the problem of low accuracy of traditional DBN in modeling continuous data. The whole process is to train the input data in an unsupervised way using continuous version of transfer function, to design the contrastive divergence in hidden-layer training process, and then to fine-tune the net by back propagation. Besides, hyper-parameters are analyzed according to stability analysis, as is given in the paper, to make sure the network finds the optimal. Experiments on Lorenz, CATS benchmark simulation and CO2 forecasting show a simplified structure, fast convergence speed and accuracy of this cDBN. Copyright © 2015 Acta Automatica Sinica. All rights reserved.

关键词:

Deep learning; Neural networks; Stability; Structural design; Time series forecasting

作者机构:

  • [ 1 ] [Qiao, J.-F.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Pan, G.-Y.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Han, H.-G.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Pan, G.-Y.]College of Electronic Information and Control Engineering, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2015

期: 12

卷: 41

页码: 2138-2146

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:212/4515724
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司