• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Wang, Dan (Wang, Dan.) | Zhang, Xiuzhen (Zhang, Xiuzhen.) | Liu, Shuang (Liu, Shuang.) | Zhang, Lei (Zhang, Lei.) | Chen, Chang Wen (Chen, Chang Wen.)

收录:

EI Scopus SCIE

摘要:

User analysis is an important part of social network analysis. Most existing studies model users separately using either user-generated contents or social links among users. In this paper we propose to model users on the Content Curation Social Network (CCSN) in a unified framework by mining User-generated contents as well as social links. We propose a latent Bayesian model Multi-level LDA (MLLDA) that represents users with latent user interests discovered from user-contributed textual description and social links formed by information sharing. We demonstrate that MLLDA can produce accurate user models for community discovery and recommendation on the CCSN.

关键词:

Jensen-Shannon Divergence User profiling Multi-Level Latent Dirichlet Allocation (MLLDA)

作者机构:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Sch ICE Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Dan]Beijing Univ Technol, Sch ICE Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Shuang]Beijing Univ Technol, Sch ICE Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Lei]Beijing Univ Technol, Sch ICE Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Xiuzhen]RMIT Univ, Sch CS & IT, GPO Box 2476, Melbourne, Vic 3001, Australia
  • [ 6 ] [Chen, Chang Wen]SUNY Buffalo, Dept CSE, Buffalo, NY 14260 USA

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Sch ICE Informat & Commun Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2017

卷: 236

页码: 73-81

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:2

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:889/4291276
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司