• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yong-ping (Du, Yong-ping.) (学者:杜永萍) | Yao, Chang-qing (Yao, Chang-qing.) | Huo, Shu-hua (Huo, Shu-hua.) | Liu, Jing-xuan (Liu, Jing-xuan.)

收录:

EI Scopus SCIE CSCD

摘要:

The collaborative filtering (CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine (RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieLens show that the item-based multilayer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843.

关键词:

Recommendation system Collaborative filtering Deep network structure Restricted Boltzmann machine

作者机构:

  • [ 1 ] [Du, Yong-ping]Beijing Univ Technol, Inst Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Huo, Shu-hua]Beijing Univ Technol, Inst Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jing-xuan]Beijing Univ Technol, Inst Comp Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Yao, Chang-qing]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China

通讯作者信息:

  • [Yao, Chang-qing]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING

ISSN: 2095-9184

年份: 2017

期: 5

卷: 18

页码: 658-666

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:103/4301929
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司