收录:
摘要:
This paper applies a numerical approach to improve the understanding of reaction to various inflow conditions for the compressor system and the mechanism of stall inception under rotating inflow distortions. Full annulus, unsteady, three-dimensional computational fluid dynamics has been used to simulate an axial low-speed compressor operating under rotating distorted inflow conditions. The development of the flow through the rotor is then explained in terms of the redistribution of the flow field and the process of stall inception. The results suggest that the increased flow incidence close to the tip region under co-rotating inflow distortion plays an important role on the stall inception process. The presence of a strong modal wave is observed under co-rotating inflow distortions. This leads to a significant impact on the loss of stall margin, as compared with other distorted inflow conditions. There is a significant peak in the flow coefficient at stall for co-rotating inlet distortion. It can be interpreted as a resonant behavior of the compressor under a strong interaction between the flow field and inlet distortion. It indicates that the stall inception is triggered by the perturbation of the rotating distorted inflow through the long length scale disturbances.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
ISSN: 0954-4062
年份: 2017
期: 10
卷: 231
页码: 1859-1870
2 . 0 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:165
中科院分区:4
归属院系: