• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, J. (Qiao, J..) | Wang, C. (Wang, C..) | Wei, J. (Wei, J..) (学者:魏佳)

收录:

Scopus PKU CSCD

摘要:

The particle swarm optimization (1∗80) method can have difficulty reaching local minima and have difficulty optimizing high-dimensional nonlinear problems. In order to address these concerns, we propose an a daptive particle swarm optimization algorithm with local search. The core premise of the algorithm is to adjust the algorithm parameters dynamically based on the population distribution information and to increase population diversity by incorporating a chaos mutation mechanism. A mechanism is added to strengthen the local search ability of the algorithm. The optimization results of six benehruarking functions show that the algorithm exhibits better optimization performance. We also apply the algorithm to the optimization of two actual network cases; the Hanoi network and the New York network. The results show that the algorithm provides a better search precision and faster convergence speed than other algorithms.

关键词:

Local search; Parameter adjustment; Particle swarm optimization (PSO) algorithm; Water suppj.- network

作者机构:

  • [ 1 ] [Qiao, J.]Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Qiao, J.]Beijing Key laboratory of Computational Intelligence and Intelligence System, Beijing, 100124, China
  • [ 3 ] [Wang, C.]Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Wang, C.]Beijing Key laboratory of Computational Intelligence and Intelligence System, Beijing, 100124, China
  • [ 5 ] [Wei, J.]Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Wei, J.]Beijing Key laboratory of Computational Intelligence and Intelligence System, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Information and Control

ISSN: 1002-0411

年份: 2015

期: 4

卷: 44

页码: 385-392

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:134/4285094
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司