• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Y.-F. (Sun, Y.-F..) (学者:孙艳丰) | Yang, X.-D. (Yang, X.-D..) (学者:杨晓东) | Hu, Y.-L. (Hu, Y.-L..) (学者:胡永利) | Wang, P. (Wang, P..)

收录:

Scopus PKU CSCD

摘要:

In the extreme learning machine (ELM) network, sigmoid activation function is usually chosen for additive hidden neurons. Therefore, this paper replaced this activation function with a smooth approximation called softplus function. Because of being closer to the biological activation model and having certain sparseness, softplus activation function can further optimize network performance. In order to have a better classification performance, the optimization model of ELM by the improved Fisher discriminative analysis was restricted, and animproved ELM algorithm was proposed. Thus the output weights can be obtained analytically and are more conducive for classification. Finally, the experiments on handwritten digit database and face database prove the feasibility and superiority of the improved ELM algorithm. ©, 2015, Beijing University of Technology. All right reserved.

关键词:

Activation function; ELM algorithm; Fisher discrimination

作者机构:

  • [ 1 ] [Sun, Y.-F.]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Yang, X.-D.]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Hu, Y.-L.]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Wang, P.]College of Applied Science, Harbin University of Science and Technology, Harbin, 150080, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2015

期: 9

卷: 41

页码: 1341-1348

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:304/3765962
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司