• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cai, Y.-Q. (Cai, Y.-Q..) (学者:蔡永泉) | Jin, Y.-P. (Jin, Y.-P..) | Ge, A.-S. (Ge, A.-S..) | Zhao, K. (Zhao, K..)

收录:

Scopus PKU CSCD

摘要:

The short messaging service (SMS) spam was effectively recognized based on the associative classification algorithm, and an algorithm called ACW was proposed. The algorithm generated ordered classification rules with association rules mining method by using the semantic order words. In the experiments, that ACW is better than the traditional associative classification algorithm in the territory of classification of SMS is demonstrated in this paper. ©, 2015, Beijing University of Technology. All right reserved.

关键词:

Associative classification; SMS spam recognition; Word order

作者机构:

  • [ 1 ] [Cai, Y.-Q.]College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Jin, Y.-P.]College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Ge, A.-S.]Lenovo Research & Technology Group, Lenovo Group Limited, Beijing, 100084, China
  • [ 4 ] [Zhao, K.]Lenovo Research & Technology Group, Lenovo Group Limited, Beijing, 100084, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2015

期: 7

卷: 41

页码: 1020-1027

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2030/4277330
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司