• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Ke (Gu, Ke.) (学者:顾锞) | Li, Leida (Li, Leida.) | Lu, Hong (Lu, Hong.) | Min, Xiongkuo (Min, Xiongkuo.) | Lin, Weisi (Lin, Weisi.)

收录:

EI Scopus SCIE

摘要:

A fast reliable computational quality predictor is eagerly desired in practical image/video applications, such as serving for the quality monitoring of real-time coding and transcoding. In this paper, we propose a new perceptual image quality assessment (IQA) metric based on the human visual system (HVS). The proposed IQA model performs efficiently with convolution operations at multiscales, gradient magnitude, and color information similarity, and a perceptual-based pooling. Extensive experiments are conducted using four popular large-size image databases and two multiply distorted image databases, and results validate the superiority of our approach over modern IQA measures in efficiency and efficacy. Our metric is built on the theoretical support of the HVS with lately designed IQA methods as special cases.

关键词:

per-ceptual image quality assessment (IQA) Color information gradient operator pooling structure

作者机构:

  • [ 1 ] [Gu, Ke]Beijing Univ Technol, BJUT Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellign, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Leida]China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221116, Peoples R China
  • [ 3 ] [Lu, Hong]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China
  • [ 4 ] [Min, Xiongkuo]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 5 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore

通讯作者信息:

  • [Lu, Hong]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

ISSN: 0278-0046

年份: 2017

期: 5

卷: 64

页码: 3903-3912

7 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:1

被引次数:

WoS核心集被引频次: 184

SCOPUS被引频次: 216

ESI高被引论文在榜: 29 展开所有

  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:631/3884356
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司