• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, P. (Chang, P..) | Wang, P. (Wang, P..) | Gao, X.-J. (Gao, X.-J..) (学者:高学金) | Cheng, Z. (Cheng, Z..)

收录:

Scopus PKU CSCD

摘要:

As the multi-way kernel entropy partial least squares (MKEPLS) method does not make full use of the higher-order statistics of the process data, which will lose the important information in the feature extraction, and result in degraded fault identification performance. To solve this problem, a novel method based on higher order statistics and multi-way kernel entropy partial least squares (HOS-MKEPLS) is proposed, in which the raw data space is projected into statistics space by calculating the higher order statistics of the data set, establishing the monitoring MKEPLS model, then adopting the contribution figure method on the trace of the fault variables. Finallay, the method is applied to an industrial penicillin fermentation process, and compared with the MKEPLS model. Results show that the method has a better monitoring performance and can detect and identify the fault. ©, 2015, Beijing University of Technology. All right reserved.

关键词:

Batch process; Fault monitoring; Fault variable tracing; Higer order statistics; Multi-way kernel entropy partial least squares (MKEPLS)

作者机构:

  • [ 1 ] [Chang, P.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Wang, P.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Gao, X.-J.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Cheng, Z.]China Chemical Geology and Mine Bureau, Beijing, 100013, China

通讯作者信息:

  • 高学金

    [Gao, X.-J.]College of Electronic Information and Control Engineering, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2015

期: 5

卷: 41

页码: 668-673

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:643/3905016
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司