• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Y. (Yuan, Y..) | Jia, K. (Jia, K..)

收录:

Scopus

摘要:

Water quality assessment is very important for monitoring water sources and main canal, which is beneficial to offer strategies for the management of water quality and environment. This paper proposes a water quality assessment method based on a sparse autoencoder network. In the proposed approach, a representation model is firstly learned via a sparse autoencoder trained by unlabeled water monitoring data acquired from DanJiangKou reservoir, then a softmax classifier is trained using a small set of labeled classification data based on the China Surface Water Environmental Quality Standard (GB3838-2002) expressed by the sparse autoencoder. The combined model is finally used to evaluate the water quality. Experimental results show that the proposed method in this paper is of high robustness and accuracy of water quality assessment, and has a good prospect of practical applications. © 2015 IEEE.

关键词:

deep learning; softmax; sparse autoencoder; water quality assessment

作者机构:

  • [ 1 ] [Yuan, Y.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Jia, K.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2015 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2015

年份: 2015

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:156/3773628
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司