• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Y. (Zhang, Y..) (学者:张勇) | Li, Y. (Li, Y..) | Cai, Z. (Cai, Z..)

收录:

Scopus

摘要:

Binary relevance (BR), a basic Multi-label classification (MLC) method, learns a single binary model for each different label without considering the dependences among rest of labels. Many chaining and stacking techniques exploit the dependences among labels to improve the predictive accuracy for MLC. Using these two techniques, BR has been promoted as dependent binary relevance (DBR). In this paper we propose a pruning method for DBR, in which the Phi coefficient function has been employed to estimate correlation degrees among labels for removing irrelevant labels. We conducted our pruning algorithm on benchmark multi-label datasets, and the experimental results show that our pruning approach can reduce the computational cost of DBR and improve the predictive performance generally. © 2015 IEEE.

关键词:

data mining; dependent binary relevance models; label dependence; multi-label classification; Phi coefficient

作者机构:

  • [ 1 ] [Zhang, Y.]Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Y.]Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Cai, Z.]Computer Science and Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Proceedings of 2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2015

年份: 2015

页码: 399-404

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:912/3916920
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司