• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ming-ai (Li, Ming-ai.) (学者:李明爱) | Zhu, Wei (Zhu, Wei.) | Liu, Hai-na (Liu, Hai-na.) | Yang, Jin-fu (Yang, Jin-fu.) (学者:杨金福)

收录:

Scopus SCIE

摘要:

Motor imagery EEG (MI-EEG), which reflects one's active movement intention, has attracted increasing attention in rehabilitation therapy, and accurate and fast feature extraction is the key problem to successful applications. Based on wavelet packet decomposition (WPD) and SE-isomap, an adaptive feature extraction method is proposed in this paper. The MI-EEG is preprocessed to determine a more effective time interval through average power spectrum analysis. WPD is then applied to the selected segment of MI-EEG, and the subject-based optimal wavelet packets (OWPs) with top mean variance difference are obtained autonomously. The OWP coefficients are further used to calculate the time-frequency features statistically and acquire the nonlinear manifold structure features, as well as the explicit nonlinear mapping, through SE-isomap. The hybrid features are obtained in a serial fusion way and evaluated by a k-nearest neighbor (KNN) classifier. The extensive experiments are conducted on a publicly available dataset, and the experiment results of 10-fold cross-validation show that the proposed method yields relatively higher classification accuracy and computation efficiency simultaneously compared with the commonly-used linear and nonlinear approaches.

关键词:

motor imagery EEG (MI-EEG) wavelet packet decomposition (WPD) feature extraction k-nearest neighbor (KNN) supervised explicit isomap (SE-isomap)

作者机构:

  • [ 1 ] [Li, Ming-ai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hai-na]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Jin-fu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Ming-ai]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jin-fu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 李明爱

    [Li, Ming-ai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Li, Ming-ai]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2017

期: 4

卷: 7

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:4

被引次数:

WoS核心集被引频次: 39

SCOPUS被引频次: 45

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:204/4518093
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司