收录:
摘要:
Revealing the relations among parallel mechanism and robot comprehensive performance, topological structure and dimension is the basis to optimize mechanism. Due to the correlation and diversity of the single performance indexes, statistical principles of linear dimension reduction and nonlinear dimension reduction were introduced into comprehensive performance analysis and evaluation for typical parallel mechanisms and robots. Then the mechanism's topological structure and dimension with the best comprehensive performance could be selected based on principal component analysis (PCA) and kernel principal component analysis (KPCA) respectively. Through comparing the results, KPCA could reveal the nonlinear relationship among different single performance indexes to provide more comprehensive performance evaluation information than PCA, and indicate the numerical calculation relations among comprehensive performance, topological structure and dimension validly. Copyright © 2015 by ASME.
关键词:
通讯作者信息:
电子邮件地址: