• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, H. (Zhang, H..) | Zhu, Q. (Zhu, Q..) | Jia, X. (Jia, X..)

收录:

Scopus

摘要:

A gender classification system uses a given image from human face to tell the gender of the given person. An effective gender classification approach is able to improve the performance of many other applications, including image or video retrieval, security monitoring, human-computer interaction and so on. In this paper, an effective method for gender classification task in frontal facial images based on convolutional neural networks (CNNs) is presented. Our experiments have been shown that the method of CNNs for gender classification task is effective and achieves higher classification accuracy than others on FERET and CAS-PEAL-R1 facial datasets. Finally, we built a gender classification demo, where input is the scene image per frame captured by the camera and the output is the original scene image with marked on detected facial areas. © Springer International Publishing Switzerland 2015.

关键词:

Convolutional neural networks; Deep learning; Face detection; Gender classification; Gender recognition

作者机构:

  • [ 1 ] [Zhang, H.]School of Software Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Zhu, Q.]School of Software Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Jia, X.]School of Software Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Zhang, H.]School of Software Engineering, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

ISSN: 0302-9743

年份: 2015

卷: 9529

页码: 78-91

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:442/4957471
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司