• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jing (Zhang, Jing.) (学者:张菁) | Zhou, Qianlan (Zhou, Qianlan.) | Zhuo, Li (Zhuo, Li.) | Geng, Wenhao (Geng, Wenhao.) | Wang, Suyu (Wang, Suyu.)

收录:

EI Scopus SCIE

摘要:

With the rapid development of remote sensing technology, searching the similar image is a challenge for hyperspectral remote sensing image processing. Meanwhile, the dramatic growth in the amount of hyperspectral remote sensing data has stimulated considerable research on content-based image retrieval (CBIR) in the field of remote sensing technology. Although many CBIR systems have been developed, few studies focused on the hyperspectral remote sensing images. A CBIR system for hyperspectral remote sensing image using endmember extraction is proposed in this paper. The main contributions of our method are that: (1) the endmembers as the spectral features are extracted from hyperspectral remote sensing image by improved automatic pixel purity index (APPI) algorithm; (2) the spectral information divergence and spectral angle match (SID-SAM) mixed measure method is utilized as a similarity measurement between hyperspectral remote sensing images. At last, the images are ranked with descending and the top-M retrieved images are returned. The experimental results on NASA datasets show that our system can yield a superior performance.

关键词:

similarity measurement endmember extraction content-based image retrieval Hyperspectral remote sensing images SID-SAM mixed measure

作者机构:

  • [ 1 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Qianlan]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Geng, Wenhao]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Suyu]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE

ISSN: 0218-0014

年份: 2017

期: 4

卷: 31

1 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:4

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:221/4511248
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司