• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Bin (Wang, Bin.) | Yang, Qi (Yang, Qi.) | Guo, Chao (Guo, Chao.) | Sun, Yuxiu (Sun, Yuxiu.) | Xie, Lin-Hua (Xie, Lin-Hua.) | Li, Jian-Rong (Li, Jian-Rong.) (Scholars:李建荣)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Metal-organic frameworks are a class of attractive materials for fluorescent sensing. Improvement of hydrolytic stability, sensitivity, and selectivity of function is the key to advance application of fluorescent MOFs in aqueous media. In this work, two stable MOFs, [Zr6O4(OH)(8)(H2O)(4)(L-1)(2)] (BUT-14) and [Zr6O4(OH)(8)(H2O)(4)(L-2)(2)] (BUT-15), were designed and synthesized for the detection of metal ions in water. Two new ligands utilized for construction of the MOFs, namely, 5',5"'-bis (4-carboxypheny1)-[1,1':3',1 '':4 '',1''':3''',1''''-quinquepheny1]-4,4''''-dicarboxylate (L-1) and 4,4',4 '',4 ''-(4,4'-(1,4-phenylene)bis(pyridine-6,4,2-triy1))-tetrabenzoate (L-2), are structurally similar with the only difference being that the latter is functionalized by pyridine N atoms. The two MOFs are isostructural with a sqc-a topological framework structure, and highly porous with the Brunauer-Emmett-Teller (BET) surface areas of 3595 and 3590 m(2) g(-1), respectively. Interestingly, they show intense fluorescence in water, which can be solely quenched by trace amounts of Fe3+ ions. The detection limits toward the Fe3+ ions were calculated to be 212 and 16 ppb, respectively. The efficient fluorescent quenching effect is attributed to the photoinduced electron transfer between Fe3+ ions and the ligands in these MOFs. Moreover, the introduced pyridine N donors in the ligand of BUT-15 additionally donate their lone-pair electrons to the Fe3+ ions, leading to significantly enhanced detection ability. It is also demonstrated that BUT-15 exhibits an uncompromised performance for the detection of Fe3+ ions in a simulated biological system.

Keyword:

Fe3+ ion detection metal-organic framework fluorescent quenching ligand design water system

Author Community:

  • [ 1 ] [Wang, Bin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Qi]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Xie, Lin-Hua]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jian-Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Bin]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Qi]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Xie, Lin-Hua]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Jian-Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Guo, Chao]Tianjin Normal Univ, Dept Chem, Tianjin 300387, Peoples R China
  • [ 10 ] [Sun, Yuxiu]Tianjin Normal Univ, Dept Chem, Tianjin 300387, Peoples R China

Reprint Author's Address:

  • [Xie, Lin-Hua]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;[Xie, Lin-Hua]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ACS APPLIED MATERIALS & INTERFACES

ISSN: 1944-8244

Year: 2017

Issue: 11

Volume: 9

Page: 10286-10295

9 . 5 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:287

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 379

SCOPUS Cited Count: 388

ESI Highly Cited Papers on the List: 37 Unfold All

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:744/5309215
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.