• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Tao (Liu, Tao.) | Quan, Xie (Quan, Xie.) | Li, Dong (Li, Dong.) (学者:李冬)

收录:

EI Scopus SCIE

摘要:

The overall influence of dissolved oxygen (DO) concentrations and biofilm thicknesses on single stage anammox process performance has been evaluated in this study. Results indicated the biofilm displayed a rapid initial increase and followed by a relatively slower formation rate during the operational period. The optimal DO concentration could be determined from a variety of biofilm thicknesses and as well the best biofilm thickness was required among different DO levels. In our lab-scale single stage anammox reactor with a constant hydraulic retention time of 1.0h and influent ammonium of 400 mg L-1, an optimal nitrogen removal capacity was acquired (TN removal loading of 2.18 kg-N m(-3) d(-1)) at the DO level of 0.6 mg L-1 and biofilm thickness of 700 mu m. Species identification showed that Nitrosomonas related aerobic ammonium-oxidizing bacteria (AerAOB) and Candidatus Brocadia fulgida-like anaerobic ammonium-oxidizing bacteria (AnAOB) were the predominant functional bacteria mixed together with each other and exhibited no distinct niche. However, AerAOB exhibited higher biodiversity at the thinner biofilm while AnAOB showed a stable but lower biodiversity. Moreover, the population of AnAOB was smaller along with more scattered cells at the thinner biofilm while they trended to form specific irregular cauliflower-like zooglea as biofilm thickness increased. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Anammox Biofilms Biofilm thickness Bioreactors Dissolved oxygen Waste-water treatment

作者机构:

  • [ 1 ] [Liu, Tao]Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China
  • [ 2 ] [Quan, Xie]Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China
  • [ 3 ] [Li, Dong]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu, Tao]Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BIOCHEMICAL ENGINEERING JOURNAL

ISSN: 1369-703X

年份: 2017

卷: 119

页码: 20-26

3 . 9 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:119

中科院分区:3

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1898/2916570
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司