收录:
摘要:
n-Butanol is a feasible fuel candidate for spark-ignition engines. The current paper carried out an experiment to explore effects of hydrogen addition on further improving the performance of a n-butanol engine under the part load and lean conditions. Within the test, the engine intake pressure and speed were respectively kept at 61.5 kPa and 1400 rpm. The volumetric fractions of hydrogen in the total intake gas (hydrogen + air) were constrained at 0 and 3%, respectively. Under a certain hydrogen blending level, the global excess air ratio of in-cylinder charge which was changed from the stoichiometric to near the lean burn limit was adjusted by varying the n-butanol injection duration. The experimental results confirmed that the brake thermal efficiency was heightened and the lean burn limit was extended after the hydrogen addition. Besides, compared with the pure n-butanol combustion, the hydrogen enrichment enables the engine to gain dropped ignition delay and rapid combustion duration. Moreover, CO and HC from the pure n-butanol engine were reduced by the hydrogen addition. NOx were generally reduced when the excess air ratio was raised. This suggested that NOx from the hydrogen-enriched butanol engine could also be controlled by lean combustion. (C) 2016 Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ENERGY CONVERSION AND MANAGEMENT
ISSN: 0196-8904
年份: 2017
卷: 136
页码: 36-43
1 0 . 4 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:165
中科院分区:1