• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Yang, Fei (Yang, Fei.) | Wang, Guanghui (Wang, Guanghui.) | Li, Mingai (Li, Mingai.) (学者:李明爱)

收录:

EI Scopus SCIE

摘要:

Convolutional neural network (CNN)-based approaches have received state-of-the-art results in scene classification. Features from the output of fully connected (FC) layers express one-dimensional semantic information but lose the detailed information of objects and the spatial information of scene categories. On the contrary, deep convolutional features have been proved to be more suitable for describing an object itself and the spatial relations among objects in an image. In addition, the feature map from each layer is max-pooled within local neighborhoods, which weakens the invariance of global consistency and is unfavorable to scenes with highly complicated variation. To cope with the above issues, an orderless multi-channel mid-level image representation on pre-trained CNN features is proposed to improve the classification performance. The mid-level image representation of two channels from the FC layer and the deep convolutional layer are integrated at multi-scale levels. A sum pooling approach is also employed to aggregate multi-scale mid-level image representation to highlight the importance of the descriptors beneficial for scene classification. Extensive experiments on SUN397 and MIT 67 indoor datasets demonstrate that the proposed method achieves promising classification performance. (C) 2017 SPIE and IS&T

关键词:

convolutional neural network mid-level representation multi-channel scene classification

作者机构:

  • [ 1 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Yang, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Mingai]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wang, Guanghui]Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA

通讯作者信息:

  • [Yang, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF ELECTRONIC IMAGING

ISSN: 1017-9909

年份: 2017

期: 2

卷: 26

1 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:92

中科院分区:4

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1224/3641814
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司