• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Haili (Zhang, Haili.) | Qi, Yongsheng (Qi, Yongsheng.) | Wang, Lin (Wang, Lin.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Wang, Xichang (Wang, Xichang.)

收录:

Scopus SCIE

摘要:

As the main concerns of abnormal event management in process engineering, fault detection and diagnosis have attracted more and more attention recently. A new monitoring method based on kernel entropy component analysis(KECA) is proposed for nonlinear chemical process. Then, an angle-based statistic is designed to express the distinct angular structure that KECA reveals, which is able to measure the similarity between probability density functions. Likewise, each KECA classifier is dedicated to a specific fault, which provides an expendable framework for incorporating new faults identified in the process. As to the fault features are submerged because of multi-scale property of process data, an enhanced KECA method for fault detection and diagnosis is developed, by adding multi-scale principal component analysis(MSPCA) for features extraction to improve the classification effect of KECA. The effectiveness of the proposed approach is demonstrated by applying to Tennessee Eastman process. The MSPCA based method essentially captures the fault-symptom correlation, whereas KECA can be an effective method for process fault diagnosis.

关键词:

Fault detection Fault diagnosis KECA MSPCA

作者机构:

  • [ 1 ] [Zhang, Haili]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot 010051, Inner Mongolia, Peoples R China
  • [ 2 ] [Qi, Yongsheng]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot 010051, Inner Mongolia, Peoples R China
  • [ 3 ] [Wang, Lin]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot 010051, Inner Mongolia, Peoples R China
  • [ 4 ] [Gao, Xuejin]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Xichang]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Qi, Yongsheng]Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China
  • [ 7 ] [Gao, Xuejin]Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Qi, Yongsheng]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot 010051, Inner Mongolia, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS

ISSN: 0169-7439

年份: 2017

卷: 161

页码: 61-69

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:127

中科院分区:2

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 45

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:97/3269817
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司