• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Guo, Ya-Nan (Guo, Ya-Nan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

This paper investigates how to construct a recurrent radial basis function neural network (RRBFNN) by an information-oriented algorithm (IOA) and how to adjust the parameters by a gradient algorithm simultaneously. In this IOA-based RRBFNN (IOA-RRBFNN), the proposed IOA is used to calculate the information processing strength (IPS) of hidden neurons, such that the independent component contributions between the hidden neurons and output neurons can be extracted. Then, a novel self-organizing strategy is proposed to optimize the structure of RRBFNN based on the input IPS and output IPS of hidden neurons. Meanwhile, a gradient algorithm is developed to update the parameters of IOA-RRBFNN. The proposed IOA-RRBFNN can be used to organize the network structure and adjust the parameters to improve its performance. Finally, several examples are presented to illustrate the effectiveness of IOA-RRBFNN. The results demonstrate that the proposed IOA-RRBFNN is more competitive in solving the nonlinear system modeling problems compared with some existing methods.

关键词:

Recurrent radial basis function neural network Information-oriented algorithm Information processing strength Component contributions

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Ya-Nan]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Ya-Nan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2017

卷: 225

页码: 80-91

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:2

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:376/3909388
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司