• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Fanjun (Li, Fanjun.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Li, Wenjing (Li, Wenjing.)

收录:

Scopus SCIE

摘要:

An echo-state network (ESN) is an effective alternative to gradient methods for training recurrent neural network. However, it is difficult to determine the structure (mainly the reservoir) of the ESN to match with the given application. In this paper, a growing ESN (GESN) is proposed to design the size and topology of the reservoir automatically. First, the GESN makes use of the block matrix theory to add hidden units to the existing reservoir group by group, which leads to a GESN with multiple subreservoirs. Second, every subreservoir weight matrix in the GESN is created with a predefined singular value spectrum, which ensures the echo-sate property of the ESN without posterior scaling of the weights. Third, during the growth of the network, the output weights of the GESN are updated in an incremental way. Moreover, the convergence of the GESN is proved. Finally, the GESN is tested on some artificial and real-world time-series benchmarks. Simulation results show that the proposed GESN has better prediction performance and faster leaning speed than some ESNs with fixed sizes and topologies.

关键词:

recurrent neural network (RNN) growing echo-state network (GESN) Echo-state network (ESN) reservoir time-series prediction

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Fanjun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Honggui]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Wenjing]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Fanjun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Han, Honggui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Fanjun]Univ Jinan, Sch Math Sci, Jinan 250022, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2017

期: 2

卷: 28

页码: 391-404

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:1

被引次数:

WoS核心集被引频次: 130

SCOPUS被引频次: 163

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:68/3911964
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司