• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

罗卿莉 (罗卿莉.) | 陈志远 (陈志远.) | 刘宇婷 (刘宇婷.) | 张进 (张进.) | 李煜 (李煜.)

摘要:

为研究利用紧缩极化SAR代替全极化SAR进行海洋溢油检测的可行性,以及不同极化参数对溢油检测准确率的影响,本文利用卷积神经网络(CNN)的SAR溢油检测算法,对全极化模式及由全极化构造的紧缩极化SAR数据分别提取极化参数,研究其对于溢油分类准确率的影响;同时对比不同SAR数据预处理步骤对溢油检测精度的影响。研究结果表明,对于预处理步骤,线性拉伸方法能够有效提升溢油检测的准确率;在极化参数选择上,极化参数极化熵H在全极化与紧缩极化模式上都取得最高的分类准确率,分别为0.972和0.978。该研究结果证明了利用紧缩极化SAR代替全极化SAR进行溢油检测的可行性,在溢油检测方面具有较好的应用潜力。

关键词:

极化分解 紧缩极化 卷积神经网络 合成孔径雷达 海洋溢油

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

测绘通报

ISSN: 0494-0911

年份: 2024

期: 6

页码: 13-18

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:407/4930472
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司