• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索
高影响力成果及被引频次趋势图 关键词云图及合作者关系图

您的检索:

学者姓名:王术

精炼检索结果:

成果类型

应用 展开

来源

应用 展开

合作者

应用 展开

语言

应用

清除所有精炼条件

排序方式:
默认
  • 默认
  • 标题
  • 年份
  • WOS被引数
  • 影响因子
  • 正序
  • 倒序
< 页,共 10 >
GLOBAL WEAK SOLUTIONS TO THE alpha-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS SCIE CSCD
期刊论文 | 2021 , 41 (3) , 679-702 | ACTA MATHEMATICA SCIENTIA
摘要&关键词 引用

摘要 :

Global in time weak solutions to the alpha-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to alpha-model regularization for the three dimension compressible Euler-Poisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies gamma > 4/3.

关键词 :

alpha-model regularization for Euler-Poisson equations alpha-model regularization for Euler-Poisson equations Faedo-Galerkin method Faedo-Galerkin method Global weak solutions Global weak solutions

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Ren, Yabo , Guo, Boling , Wang, Shu . GLOBAL WEAK SOLUTIONS TO THE alpha-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS [J]. | ACTA MATHEMATICA SCIENTIA , 2021 , 41 (3) : 679-702 .
MLA Ren, Yabo 等. "GLOBAL WEAK SOLUTIONS TO THE alpha-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS" . | ACTA MATHEMATICA SCIENTIA 41 . 3 (2021) : 679-702 .
APA Ren, Yabo , Guo, Boling , Wang, Shu . GLOBAL WEAK SOLUTIONS TO THE alpha-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS . | ACTA MATHEMATICA SCIENTIA , 2021 , 41 (3) , 679-702 .
导入链接 NoteExpress RIS BibTex
Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model SCIE
期刊论文 | 2021 , 272 , 473-543 | JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 5
摘要&关键词 引用

摘要 :

The purpose of this paper is to study the local well-posedness problem on the magnetohydrodynamics (MHD)-structure interaction (MHDSI) systems. The fluid is represented by the incompressible viscous and non-resistive MHD equation in Euler coordinates while the structure is modeled by the elasticity equation with superconductor material in Lagrangian coordinates. The equations are coupled along the moving interface though transmission boundary conditions for velocity, stress and magnetic field. The local existence of at least one strong solution in time to the incompressible viscous and non-resistive MHD-structure interaction model was proved in the sense of one suitable Sobolev's space norm by using the careful energy method and fixed point theory combining with penalization and regularization techniques and by overcoming the coupling difficulties caused by the magnetic field. (C) 2020 Elsevier Inc. All rights reserved.

关键词 :

Elasticity equation Elasticity equation Local strong solutions Local strong solutions Magnetohydrodynamics equation Magnetohydrodynamics equation Magnetohydrodynamics-structure interaction Magnetohydrodynamics-structure interaction Moving interface Moving interface

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Shen, Lin , Wang, Shu , Yang, Rong . Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 272 : 473-543 .
MLA Shen, Lin 等. "Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model" . | JOURNAL OF DIFFERENTIAL EQUATIONS 272 (2021) : 473-543 .
APA Shen, Lin , Wang, Shu , Yang, Rong . Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 272 , 473-543 .
导入链接 NoteExpress RIS BibTex
Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems SCIE
期刊论文 | 2021 , 301 , 471-542 | JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 6
摘要&关键词 引用

摘要 :

The initial value problems of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell (CNS-M) systems arising from plasmas in R-3 are studied. The main difficulty of studying the bipolar isentropic/non-isentropic CNS-M systems lies in the appearance of the electromagnetic fields satisfying the hyperbolic Maxwell equations. The large time-decay rates of global smooth solutions with small amplitude in L-q(R-3) for 2 <= q <= infinity are established. For the bipolar non-isentropic CNS-M system, the difference of velocities of two charged carriers decay at the rate (1 + t)- rate (1 + t)(-3/4+1/4q) which is faster than the rate (1+t)(-3/4+1/4q)(ln -3/+t))(1-2/q) of the bipolar isentropic CNS-M system, meanwhile, the magnetic field decay at the rate (1 + t)(-3/4+1/4q)(ln -3/+t))(1-2/q) which is slower than the rate (1 +t)- 34 + 4q 3 for the bipolar isentropic CNS-M system. The approach adopted is the classical energy method but with some new developments, where the techniques of choosing symmetrizers and the spectrum analysis on the linearized homogeneous system play the crucial roles. (C) 2021 Elsevier Inc. All rights reserved.

关键词 :

non-isentropic CNS-M system non-isentropic CNS-M system Plasmas Plasmas The bipolar isentropic The bipolar isentropic Time-decay rates Time-decay rates

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Feng, Yue-Hong , Li, Xin , Mei, Ming et al. Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 301 : 471-542 .
MLA Feng, Yue-Hong et al. "Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems" . | JOURNAL OF DIFFERENTIAL EQUATIONS 301 (2021) : 471-542 .
APA Feng, Yue-Hong , Li, Xin , Mei, Ming , Wang, Shu . Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 301 , 471-542 .
导入链接 NoteExpress RIS BibTex
Quasi-neutral limit and the initial layer problem of the drift-diffusion model SCIE CSCD
期刊论文 | 2020 , 40 (4) , 1152-1170 | ACTA MATHEMATICA SCIENTIA
摘要&关键词 引用

摘要 :

In this article we study quasi-neutral limit and the initial layer problem of the drift-diffusion model. Different from others studies, we consider the physical case that the mobilities of the charges are different. The quasi-neutral limit with an initial layer structure is rigorously proved by using the weighted energy method coupled with multi-scaling asymptotic expansions.

关键词 :

initial layer initial layer multiple scaling asymptotic expansions multiple scaling asymptotic expansions weighted energy functional weighted energy functional

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Wang, Shu , Jiang, Limin . Quasi-neutral limit and the initial layer problem of the drift-diffusion model [J]. | ACTA MATHEMATICA SCIENTIA , 2020 , 40 (4) : 1152-1170 .
MLA Wang, Shu et al. "Quasi-neutral limit and the initial layer problem of the drift-diffusion model" . | ACTA MATHEMATICA SCIENTIA 40 . 4 (2020) : 1152-1170 .
APA Wang, Shu , Jiang, Limin . Quasi-neutral limit and the initial layer problem of the drift-diffusion model . | ACTA MATHEMATICA SCIENTIA , 2020 , 40 (4) , 1152-1170 .
导入链接 NoteExpress RIS BibTex
INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION SCIE
期刊论文 | 2020 | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 3
摘要&关键词 引用

摘要 :

This article concerns the initial-boundary layer effects of the 3-D incompressible Boussinesq system for Rayleigh-Benard convection with ill-prepared initial data. We consider a non-slip boundary condition for the velocity field and inhomogeneous Dirichlet boundary condition for the temperature. By means of multi-scale analysis and matched asymptotic expansion methods, we establish an accurate approximating solution for the viscous and diffusive Boussinesq system. We also study the convergence of the infinite Prandtl number limit.

关键词 :

asymptotic expansion asymptotic expansion Boussinesq system Boussinesq system infinite Prandtl number limit infinite Prandtl number limit initial-boundary layer initial-boundary layer Rayleigh-Benard convection Rayleigh-Benard convection

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing . INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION [J]. | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS , 2020 .
MLA Fan, Xiaoting et al. "INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION" . | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS (2020) .
APA Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing . INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION . | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS , 2020 .
导入链接 NoteExpress RIS BibTex
Stability of planar rarefaction wave to the 3D bipolar Vlasov Poisson Boltzmann system SCIE
期刊论文 | 2020 , 30 (1) , 23-104 | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
WoS核心集被引次数: 5
摘要&关键词 引用

摘要 :

We investigate the time-asymptotic stability of planar rarefaction wave for the 3D bipolar Vlasov Poisson Boltzmann (VPB) system, based on the micro macro decompositions introduced in [T. P. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004) 133-179; Energy method for the Boltzmann equation, Physica D 188 (2004) 178-192] and our new observations on the underlying wave structures of the equation to overcome the difficulties due to the wave propagation along the transverse directions and its interactions with the planar rarefaction wave. Note that this is the first stability result of basic wave patterns for bipolar VPB system in three dimensions.

关键词 :

planar rarefaction wave planar rarefaction wave stability stability Vlasov-Poisson-Boltzmann system Vlasov-Poisson-Boltzmann system

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Wang, Shu , Wang, Teng . Stability of planar rarefaction wave to the 3D bipolar Vlasov Poisson Boltzmann system [J]. | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES , 2020 , 30 (1) : 23-104 .
MLA Wang, Shu et al. "Stability of planar rarefaction wave to the 3D bipolar Vlasov Poisson Boltzmann system" . | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES 30 . 1 (2020) : 23-104 .
APA Wang, Shu , Wang, Teng . Stability of planar rarefaction wave to the 3D bipolar Vlasov Poisson Boltzmann system . | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES , 2020 , 30 (1) , 23-104 .
导入链接 NoteExpress RIS BibTex
THE WELL-POSEDNESS AND REGULARITY OF A ROTATING BLADES EQUATION SCIE
期刊论文 | 2020 , 28 (2) , 691-719 | ELECTRONIC RESEARCH ARCHIVE
WoS核心集被引次数: 2
摘要&关键词 引用

摘要 :

In this paper, a rotating blades equation is considered. The arbitrary pre-twisted angle, arbitrary pre-setting angle and arbitrary rotating speed are taken into account when establishing the rotating blades model. The nonlinear PDEs of motion and two types of boundary conditions are derived by the extended Hamilton principle and the first-order piston theory. The well-posedness of weak solution (global in time) for the rotating blades equation with Clamped-Clamped (C-C) boundary conditions can be proved by compactness method and energy method. Strong energy estimates are derived under additional assumptions on the initial data. In addition, the existence and regularity of weak solutions (global in time) for the rotating blades equation with Clamped-Free (C-F) boundary conditions are proved as well.

关键词 :

regularity regularity Rotating blades Rotating blades weak solution weak solution well-posedness well-posedness

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Shen, Lin , Wang, Shu , Wang, Yongxin . THE WELL-POSEDNESS AND REGULARITY OF A ROTATING BLADES EQUATION [J]. | ELECTRONIC RESEARCH ARCHIVE , 2020 , 28 (2) : 691-719 .
MLA Shen, Lin et al. "THE WELL-POSEDNESS AND REGULARITY OF A ROTATING BLADES EQUATION" . | ELECTRONIC RESEARCH ARCHIVE 28 . 2 (2020) : 691-719 .
APA Shen, Lin , Wang, Shu , Wang, Yongxin . THE WELL-POSEDNESS AND REGULARITY OF A ROTATING BLADES EQUATION . | ELECTRONIC RESEARCH ARCHIVE , 2020 , 28 (2) , 691-719 .
导入链接 NoteExpress RIS BibTex
QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA SCIE
期刊论文 | 2020 , 28 (2) , 879-895 | ELECTRONIC RESEARCH ARCHIVE
WoS核心集被引次数: 1
摘要&关键词 引用

摘要 :

In this paper, we study the quasi-neutral limit for the compressible two-fluid Euler-Maxwell equations for well-prepared initial data. Precisely, we proved the solution of the three-dimensional compressible two-fluid Euler-Maxwell equations converges locally in time to that of the compressible Euler equation as E tends to zero. This proof is based on the formal asymptotic expansions, the iteration techniques, the vector analysis formulas and the Sobolev energy estimates.

关键词 :

formal asymptotic expansions formal asymptotic expansions quasi-neutral limit quasi-neutral limit singular perturbation methods singular perturbation methods Two-fluid Euler-Maxwell equations Two-fluid Euler-Maxwell equations uniform energy estimates uniform energy estimates

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Li, Min , Pu, Xueke , Wang, Shu . QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA [J]. | ELECTRONIC RESEARCH ARCHIVE , 2020 , 28 (2) : 879-895 .
MLA Li, Min et al. "QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA" . | ELECTRONIC RESEARCH ARCHIVE 28 . 2 (2020) : 879-895 .
APA Li, Min , Pu, Xueke , Wang, Shu . QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA . | ELECTRONIC RESEARCH ARCHIVE , 2020 , 28 (2) , 879-895 .
导入链接 NoteExpress RIS BibTex
The Regularity Criteria and the A Priori Estimate on the 3D Incompressible Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems SCIE
期刊论文 | 2020 , 2020 | JOURNAL OF FUNCTION SPACES
WoS核心集被引次数: 1
摘要&关键词 引用

摘要 :

The paper considers the regularity problem on three-dimensional incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems. We establish one regularity criteria of the weak solutions involving only in a vorticity component omega(3) and one a priori estimate on the solution that parallel to H(3)u(3)parallel to(L infinity(0,T;Lp (R3))) is bounded for 1 <= p <= infinity to three-dimensional incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems. These extent greatly the corresponding results on axisymmetric cylindrical flow.

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Geng, Fan , Wang, Shu , Wang, Yongxin . The Regularity Criteria and the A Priori Estimate on the 3D Incompressible Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems [J]. | JOURNAL OF FUNCTION SPACES , 2020 , 2020 .
MLA Geng, Fan et al. "The Regularity Criteria and the A Priori Estimate on the 3D Incompressible Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems" . | JOURNAL OF FUNCTION SPACES 2020 (2020) .
APA Geng, Fan , Wang, Shu , Wang, Yongxin . The Regularity Criteria and the A Priori Estimate on the 3D Incompressible Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems . | JOURNAL OF FUNCTION SPACES , 2020 , 2020 .
导入链接 NoteExpress RIS BibTex
The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates SCIE
期刊论文 | 2020 , 103 | APPLIED MATHEMATICS LETTERS
WoS核心集被引次数: 3
摘要&关键词 引用

摘要 :

This paper investigates the viscosity vanishing limit and the existence and uniqueness of the global strong solution on the three-dimensional incompressible Navier-Stokes equations without swirl in spherical coordinates. We establish the global existence and uniqueness of the smooth solution to the Cauchy problem for the three-dimensional incompressible Navier-Stokes equations for the any smooth large initial data without swirl in the sense of spherical coordinates. Also, by performing the viscosity vanishing limit for the global strong solution in time to the three-dimensional incompressible Navier-Stokes equations, we prove that there exists the unique and global strong solution to the Cauchy problem for the three-dimensional incompressible Euler equation without swirl in spherical coordinates with large initial data. (C) 2019 Elsevier Ltd. All rights reserved.

关键词 :

Euler equations Euler equations Global smooth solution Global smooth solution Navier-Stokes equations Navier-Stokes equations Spherical coordinates Spherical coordinates Three-dimensional incompressible Three-dimensional incompressible Viscosity vanishing limit Viscosity vanishing limit

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Wang, Shu . The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates [J]. | APPLIED MATHEMATICS LETTERS , 2020 , 103 .
MLA Wang, Shu . "The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates" . | APPLIED MATHEMATICS LETTERS 103 (2020) .
APA Wang, Shu . The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates . | APPLIED MATHEMATICS LETTERS , 2020 , 103 .
导入链接 NoteExpress RIS BibTex
每页显示 10| 20| 50 条结果
< 页,共 10 >

导出

数据:

选中

格式:
在线人数/总访问数:141/3971960
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司