• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索
高影响力成果及被引频次趋势图 关键词云图及合作者关系图
排序方式:
默认
  • 默认
  • 标题
  • 年份
  • WOS被引数
  • 影响因子
  • 正序
  • 倒序
< 页,共 2 >
Spectral stability of bacteria pulses for a Keller-Segel chemotactic model SCIE
期刊论文 | 2021 , 304 , 229-286 | JOURNAL OF DIFFERENTIAL EQUATIONS
摘要&关键词 引用

摘要 :

This paper is concerned with the stability of traveling waves for a Keller-Segel model with singular chemotactic term and zero chemo-attractant diffusion, where the model and the waves are established to explain the propagation of bacteria pulses along a capillary tube observed in Adler's experiment [1]. By applying the detailed spectral analysis, Evans function method and special transformations and combining with some numerical simulations, in some range of the parameters all the waves are shown to be spectrally stable in some exponentially weighted spaces, and in other range of parameters all the waves are shown to be unstable in any exponentially weighted spaces. The local well-posedness of the classical positive solution to the Cauchy problem of the model is also obtained by applying semigroup argument and some special transformations. (c) 2021 Elsevier Inc. All rights reserved.

关键词 :

Stability Stability Evans function Evans function Traveling waves Traveling waves Spectral analysis Spectral analysis Chemotactic model Chemotactic model

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Li, Yi , Li, Yong , Wu, Yaping et al. Spectral stability of bacteria pulses for a Keller-Segel chemotactic model [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 304 : 229-286 .
MLA Li, Yi et al. "Spectral stability of bacteria pulses for a Keller-Segel chemotactic model" . | JOURNAL OF DIFFERENTIAL EQUATIONS 304 (2021) : 229-286 .
APA Li, Yi , Li, Yong , Wu, Yaping , Zhang, Hao . Spectral stability of bacteria pulses for a Keller-Segel chemotactic model . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2021 , 304 , 229-286 .
导入链接 NoteExpress RIS BibTex
Quasi-neutral limit of the Isothermal Naiver-Stokes-Poisson with boundary SCIE
期刊论文 | 2021 , 121 | APPLIED MATHEMATICS LETTERS
摘要&关键词 引用

摘要 :

The quasineutral limit of the isothermal Navier-Stokes-Poisson system is rigorously proved when the combined quasineutral and vanishing viscosity limit is considered in a domain with boundary. The convergence of the global weak solution for Navier-Stokes-Poisson system to the strong solution for incompressible Euler equations is obtained. (C) 2021 Elsevier Ltd. All rights reserved.

关键词 :

Incompressible Euler equations Incompressible Euler equations Navier-Stokes-Poisson Navier-Stokes-Poisson Boundary layer Boundary layer Quasineutral limit Quasineutral limit

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Ju, Qiangchang , Li, Yong , Yu, Tiantian . Quasi-neutral limit of the Isothermal Naiver-Stokes-Poisson with boundary [J]. | APPLIED MATHEMATICS LETTERS , 2021 , 121 .
MLA Ju, Qiangchang et al. "Quasi-neutral limit of the Isothermal Naiver-Stokes-Poisson with boundary" . | APPLIED MATHEMATICS LETTERS 121 (2021) .
APA Ju, Qiangchang , Li, Yong , Yu, Tiantian . Quasi-neutral limit of the Isothermal Naiver-Stokes-Poisson with boundary . | APPLIED MATHEMATICS LETTERS , 2021 , 121 .
导入链接 NoteExpress RIS BibTex
Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R-3 SCIE
期刊论文 | 2019 , 469 (1) , 169-187 | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
WoS核心集被引次数: 13
摘要&关键词 引用

摘要 :

The quasineutral limit of the two-fluid Euler-Poisson system (one for ions and another for electrons) in a bounded domain of R-3 is rigorously proved by investigating the existence and the stability of boundary layers. The non-penetration boundary condition for velocities and Dirichlet boundary condition for electric potential are considered. (C) 2018 Elsevier Inc. All rights reserved.

关键词 :

Boundary layer Boundary layer Compressible isothermal Euler equations Compressible isothermal Euler equations Quasineutral limit Quasineutral limit Two-fluid Euler-Poisson system Two-fluid Euler-Poisson system

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Ju, Qiangchang , Li, Yong . Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R-3 [J]. | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS , 2019 , 469 (1) : 169-187 .
MLA Ju, Qiangchang et al. "Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R-3" . | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 469 . 1 (2019) : 169-187 .
APA Ju, Qiangchang , Li, Yong . Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R-3 . | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS , 2019 , 469 (1) , 169-187 .
导入链接 NoteExpress RIS BibTex
Random Polygons and Estimations of pi SCIE
期刊论文 | 2019 , 17 , 575-581 | OPEN MATHEMATICS
WoS核心集被引次数: 1
摘要&关键词 引用

摘要 :

In this paper, we study the approximation of pi through the semiperimeter or area of a random n-sided polygon inscribed in a unit circle in R-2. We show that, with probability 1, the approximation error goes to 0 as n -> infinity, and is roughly sextupled when compared with the classical Archimedean approach of using a regular n-sided polygon. By combining both the semiperimeter and area of these random inscribed polygons, we also construct extrapolation improvements that can significantly speed up the convergence of these approximations.

关键词 :

Archimedean polygon Archimedean polygon Borel-Cantelli lemma Borel-Cantelli lemma extrapolation extrapolation random division random division random polygon random polygon

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Xu, Wen-Qing , Meng, Linlin , Li, Yong . Random Polygons and Estimations of pi [J]. | OPEN MATHEMATICS , 2019 , 17 : 575-581 .
MLA Xu, Wen-Qing et al. "Random Polygons and Estimations of pi" . | OPEN MATHEMATICS 17 (2019) : 575-581 .
APA Xu, Wen-Qing , Meng, Linlin , Li, Yong . Random Polygons and Estimations of pi . | OPEN MATHEMATICS , 2019 , 17 , 575-581 .
导入链接 NoteExpress RIS BibTex
Global existence of weak solution for quantum Navier-Stokes-Poisson equations SCIE
期刊论文 | 2017 , 58 (7) | JOURNAL OF MATHEMATICAL PHYSICS
WoS核心集被引次数: 5
摘要&关键词 引用

摘要 :

In this paper, we consider the compressible quantum Navier-Stokes-Poisson equations with a linear density-dependent viscosity. By the use of a singular pressure close to vacuum, we prove the global-in-time existence of weak solutions in a three-dimensional torus for large data in the sense of distribution. Published by AIP

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Yang, Jianwei , Li, Yong . Global existence of weak solution for quantum Navier-Stokes-Poisson equations [J]. | JOURNAL OF MATHEMATICAL PHYSICS , 2017 , 58 (7) .
MLA Yang, Jianwei et al. "Global existence of weak solution for quantum Navier-Stokes-Poisson equations" . | JOURNAL OF MATHEMATICAL PHYSICS 58 . 7 (2017) .
APA Yang, Jianwei , Li, Yong . Global existence of weak solution for quantum Navier-Stokes-Poisson equations . | JOURNAL OF MATHEMATICAL PHYSICS , 2017 , 58 (7) .
导入链接 NoteExpress RIS BibTex
Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system SCIE
期刊论文 | 2015 , 258 (11) , 3661-3687 | JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 11
摘要&关键词 引用

摘要 :

The quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system in the torus T-d (d >= 1) is considered. We rigorously prove that as the scaled Debye length goes to zero, the global-in-time weak solutions of the full Navier-Stokes-Fourier-Poisson system converge to the strong solution of the incompressible Navier-Stokes equations as long as the latter exists. In particular, the effect of large temperature variations is taken into account. (c) 2015 Elsevier Inc. All rights reserved.

关键词 :

Full Navier-Stokes-Fourier-Poisson system Full Navier-Stokes-Fourier-Poisson system Quasi-neutral limit Quasi-neutral limit Relative entropy Relative entropy

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Li, Yong , Ju, Qiangchang , Xu, Wen-qing . Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2015 , 258 (11) : 3661-3687 .
MLA Li, Yong et al. "Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system" . | JOURNAL OF DIFFERENTIAL EQUATIONS 258 . 11 (2015) : 3661-3687 .
APA Li, Yong , Ju, Qiangchang , Xu, Wen-qing . Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2015 , 258 (11) , 3661-3687 .
导入链接 NoteExpress RIS BibTex
ASYMPTOTIC LIMITS OF THE FULL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS SCIE
期刊论文 | 2013 , 45 (5) , 2597-2624 | SIAM JOURNAL ON MATHEMATICAL ANALYSIS
WoS核心集被引次数: 18
摘要&关键词 引用

摘要 :

The paper deals with the asymptotic limits of the full compressible magnetohydrodynamic (MHD) equations in the whole space R-3 which are the coupling between the Navier-Stokes-Fourier system with the Maxwell equations governing the behavior of the magnetic field. It is rigorously shown that for the general initial data, the weak solutions of the full compressible MHD equations converge to the strong solution of the ideal incompressible MHD equations as the Mach number, the viscosity coefficients, the heat conductivity, and the magnetic diffusion coefficient go to zero simultaneously. Furthermore, the convergence rates are also obtained.

关键词 :

asymptotic limits asymptotic limits full compressible MHD equations full compressible MHD equations ideal incompressible MHD equations ideal incompressible MHD equations relative entropy method relative entropy method

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Ju, Qiangchang , Li, Fucai , Li, Yong . ASYMPTOTIC LIMITS OF THE FULL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS [J]. | SIAM JOURNAL ON MATHEMATICAL ANALYSIS , 2013 , 45 (5) : 2597-2624 .
MLA Ju, Qiangchang et al. "ASYMPTOTIC LIMITS OF THE FULL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS" . | SIAM JOURNAL ON MATHEMATICAL ANALYSIS 45 . 5 (2013) : 2597-2624 .
APA Ju, Qiangchang , Li, Fucai , Li, Yong . ASYMPTOTIC LIMITS OF THE FULL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS . | SIAM JOURNAL ON MATHEMATICAL ANALYSIS , 2013 , 45 (5) , 2597-2624 .
导入链接 NoteExpress RIS BibTex
Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system SCIE
期刊论文 | 2013 , 254 (6) , 2587-2602 | JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 9
摘要&关键词 引用

摘要 :

The combined quasineutral and zero-electron-mass limit of the full Navier-Stokes-Fourier-Poisson system in the torus T-d (d >= 1) is considered. It is showed that, for well-prepared initial data, the weak solutions of the full Navier-Stokes-Fourier-Poisson system converge to the strong solution of the incompressible Navier-Stokes equations, as long as the latter exists. Moreover, the convergence rates are obtained. (c) 2013 Elsevier Inc. All rights reserved.

关键词 :

Full Navier-Stokes-Fourier-Poisson system Full Navier-Stokes-Fourier-Poisson system Quasineutral limit Quasineutral limit Relative entropy Relative entropy

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Ju, Qiangchang , Li, Yong . Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2013 , 254 (6) : 2587-2602 .
MLA Ju, Qiangchang et al. "Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system" . | JOURNAL OF DIFFERENTIAL EQUATIONS 254 . 6 (2013) : 2587-2602 .
APA Ju, Qiangchang , Li, Yong . Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2013 , 254 (6) , 2587-2602 .
导入链接 NoteExpress RIS BibTex
Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations SCIE
期刊论文 | 2012 , 252 (1) , 168-180 | JOURNAL OF DIFFERENTIAL EQUATIONS
WoS核心集被引次数: 11
摘要&关键词 引用

摘要 :

This paper is concerned with the initial value problem for the non-linear Klein-Gordon-Schrodinger (KGS) equations in R(3+1) time-space. By using viscous approach, the existence of the global finite-energy solution is established for the nonlinear KGS equations by compactness argument. In addition, the uniqueness of the solution is proved by introducing a function with integral form. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

关键词 :

Existence Existence Finite-energy solution Finite-energy solution KGS equations KGS equations Nonlinear Nonlinear Uniqueness Uniqueness

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Shi, Qihong , Wang, Shu , Li, Yong . Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations [J]. | JOURNAL OF DIFFERENTIAL EQUATIONS , 2012 , 252 (1) : 168-180 .
MLA Shi, Qihong et al. "Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations" . | JOURNAL OF DIFFERENTIAL EQUATIONS 252 . 1 (2012) : 168-180 .
APA Shi, Qihong , Wang, Shu , Li, Yong . Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations . | JOURNAL OF DIFFERENTIAL EQUATIONS , 2012 , 252 (1) , 168-180 .
导入链接 NoteExpress RIS BibTex
Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations SCIE
期刊论文 | 2010 , 73 (11) , 3613-3625 | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
WoS核心集被引次数: 5
摘要&关键词 引用

摘要 :

In this paper, we investigate the convergence of the time-dependent and non-isentropic Euler-Maxwell equations to incompressible Euler equations in a torus via the combined quasi-neutral and non-relativistic limit. For well prepared initial data, the convergences of solutions of the former to the solutions of the latter are justified rigorously by an analysis of asymptotic expansions and energy method. (C) 2010 Elsevier Ltd. All rights reserved.

关键词 :

Asymptotic expansion and convergence Asymptotic expansion and convergence Euler-Maxwell equations Euler-Maxwell equations Incompressible Euler equations Incompressible Euler equations Non-relativistic limit Non-relativistic limit Quasi-neutral limit Quasi-neutral limit

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Yang, Jianwei , Wang, Shu , Li, Yong et al. Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations [J]. | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS , 2010 , 73 (11) : 3613-3625 .
MLA Yang, Jianwei et al. "Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations" . | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 73 . 11 (2010) : 3613-3625 .
APA Yang, Jianwei , Wang, Shu , Li, Yong , Luo, Dang . Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations . | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS , 2010 , 73 (11) , 3613-3625 .
导入链接 NoteExpress RIS BibTex
每页显示 10| 20| 50 条结果
< 页,共 2 >

导出

数据:

选中

格式:
在线人数/总访问数:349/3972226
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司